Hãy xác định hệ số a , b , c để hàm số y = a x 4 + b x 2 + c có đồ thị như hình vẽ.
A. a = - 4 , b = - 2 , c = 2
B. a = 1 4 , b = 2 , c = 2
C. a = 4 , b = 2 , c = - 2
D. đáp án khác
Bài 1: Cho hàm số y=\(-\)ax+5. Hãy xác định hệ số a biết rằng:
a, Đồ thị hàm số song song với đường thẳng y=3x
b, Khi x=1+\(\sqrt{3}\) thì y=\(4-\sqrt{3}\)
Bài 2: Cho hàm số y=3x+b. Hãy xác định hệ số b trong mỗi trường hợp sau:
a, Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(-3\)
b, Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(-4\)
c, Đồ thị hàm số đi qua điểm M(\(-1;2\))
Mong mọi người giúp đỡ vì mình cần gấp ạ
2:
a: Thay x=0 và y=-3 vào (d), ta được:
3*0+b=-3
=>b=-3
b: Thay x=-4 và y=0 vào (d), ta được:
3*(-4)+b=0
=>b=12
c: Thay x=-1 và y=2 vào (d), ta được:
3*(-1)+b=2
=>b-3=2
=>b=5
Hãy xác định hệ số a, b, c để hàm số y = a x 4 + b x 2 + c có đồ thị như hình vẽ.
A. a = - 4 , b = - 2 , c = 2
B. a = 1 4 , b = 2 , c = 2
C. a = 4 , b = 2 , c = - 2
D. đáp án khác
Chọn D.
Phương pháp : Từ đồ thị lập hệ phương trình để tìm các hệ số.
Hãy xác định các hệ số a, b, c để hàm số y = a x 4 + b x 2 + c có đồ thị như hình vẽ
A. a = − 4 , b = − 2 , c = 2.
B. a = 1 4 , b = − 2 , c = 2.
C. a = 4 , b = 2 , c = − 2.
D. a = 1 4 , b = 2 , c = 2.
Hãy xác định các hệ số a, b, c để hàm số y = a x 4 + b x 2 + c có đồ thị như hình vẽ
A. a = − 4, b = − 2, c = 2.
B. a = 1 4 , b = − 2, c = 2.
C. a = 4, b = 2, c = − 2.
D. a = 1 4 , b = 2, c = 2.
Đáp án B
- Đồ thị có dạng W nên a > 0, loại A.
- Đồ thị cặt trục tung tại điểm 0 ; 2 ⇒ c = 2 , loại C.
Đồ thị hàm số có 3 cực trị nên a, b trái dấu.
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
Cho các hàm số bậc nhất hãy xác định hệ số a,b của chúng:
y = -3x + 2 (a = ... ; b = ...)
y = 5x (a = ... ; b = ...)
y = 1 + 4 (a = ... ; b = ...)
C2:
vẽ đồ thị các hàm số sau:
a. y= 2x + 1
b. y = -x + 2
Câu 1:
y=-3x+2
a=-3; b=2
y=5x
a=5; b=0
Cho hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) có \(f(0) = 1,f(1) = 2,f(2) = 5.\)
a) Hãy xác định giá trị của các hệ số \(a,b\) và \(c.\)
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Tham khảo:
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
a) Đồ thị của hàm số đi qua điểm A(2;1)
\(\Rightarrow x=2;y=1\)
Mà \(y=ax\)
\(\Rightarrow a=\dfrac{y}{x}=\dfrac{1}{2}\)
b) \(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\\ f\left(4\right)=\dfrac{1}{2}\cdot4=2\\ f\left(0\right)=\dfrac{1}{2}\cdot0=0\)
Vậy \(f\left(-2\right)=-1\\ f\left(4\right)=2\\ f\left(0\right)=0\)
a) Vì đồ thị hàm số y=ax đi qua điểm A(2;1) nên
Thay x=2 và y=1 vào hàm số y=ax,ta được:
\(2a=1\)
hay \(a=\dfrac{1}{2}\)
Vậy: \(a=\dfrac{1}{2}\)