Hàm số y = x 3 - 3 x + 1 nghịch biến trên khoảng nào sau đây?
A. - ∞ , 1
B. 1 , + ∞
C. - 1 , 1
D. - 2 , 2
Câu 48. Cho y=|x+1|+|x−2||x+1|+|x−2|và các mệnh đề
Câu 49. Hàm số y=-√|2x+3||2x+3| nghịch biến trên khoảng.
Câu 50. Hàm số y = 2 là hàm số gì.
A. Đồng biến B. Nghịch biến
C. không đồng biến cũng không nghịch biến D. Đáp án khác
1. Cho hàm số y =f(x) có đạo hàm f'(x) = (x^2 -1)(x-2)^2(x-3) . Hàm số đồng biến ; nghịch biến trên khoảng nào? 2. Cho hàm số y = x^4 -2x^2 . Hàm số đồng biến ; nghịch biến trên khoảng nào?
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Tìm m để hàm số
a) y = (2m - 10)x + 2 đồng biến
b) y = (2 - 5m)x + 4m - 3 đồng biến
c) y = (3 - 7m)x - 2 + 4m nghịch biến
d) y = m(3 - 2x) + x - 2 nghịch biến
e) y = (3 - √m)x - 2 là hàm số bậc nhất
f) y = \(\left(\sqrt{m-2}-1\right)x+15\) là hàm số bậc nhất
g) y = (m² + 6m + 9)x + 2 đồng biến
h) y = \(\dfrac{m-1}{m-4}x+2\) là hàm số bậc nhất
\(Ta.có:y=ax+b\)
HSĐB khi a>0 ; HSNB khi a<0
Từ đây em giải các a ra thôi nè!
a: Để hàm số đồng biến thì 2m-10>0
=>2m>10
=>m>5
b: Để hàm số đồng biến thì 2-5m>0
=>5m<2
=>m<2/5
c: Để hàm số nghịch biến thì 3-7m<0
=>7m>3
=>m>3/7
d:
\(y=m\left(3-2x\right)+x-2\)
\(=3m-2mx+x-2\)
\(=x\left(-2m+1\right)+3m-2\)
Để hàm số nghịch biến thì -2m+1<0
=>-2m<-1
=>m>1/2
e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)
f: Để đây là hàm số bậc nhất thì
\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)
g: Để hàm số đồng biến thì \(m^2+6m+9>0\)
=>\(\left(m+3\right)^2>0\)
=>m+3<>0
=>m<>-3
h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)
=>\(m\notin\left\{1;4\right\}\)
Khoảng nghịch biến của hàm số y= 1/2x^4-3x^2-3 là gì các bạn?
Hàm số y= x^2/1-x đồng biến trên khoảng nào?
Hàm số y= x^3+3x^2 nghịch biến trên khoảng nào?
Bài 1 : Cho hàm số y=(m-3)x+4 . Với giá trị nào của m thì hàm số đồng biến, nghịch biến Bài 4: Cho hàm số y=(3-√2) x+1 a, Hàm số đồng biến hay nghịch biến? Vì sao? b, Tính các giá trị tương ứng của y khi x nhân các giá trị sau ; O, 1, √2, 3+√2, 3-√2
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
bài1 tìm m để các hàm số
a) y=(m-1)x^2 đông biến khi x>0
b) y=(3-m)x^2 nghịch biến x>0
c) y=(m^2-m)x^2 nghịch biến khi x>0
bài 2/ cho hàm số y=(m^2+1)x^2 (m là tham số ) . hỏi khi x<0 thì hàm số trên đồng biến hay nghịch biến
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Bài 2
Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0
Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Với các hàm số bậc nhất, hãy cho biết hàm số đó đồng biến hay nghịch biến? a)y=5-2x b)y=x√2-1. C)y=2(x+1)-2x. D)y=3(x-1)x. e)y=-2/3 x. f)y=x+ 1/x
Các hàm số a,b,e là các hàm số bậc nhất
Cho y=-1/3x³+(m-3)x²+(m+4)x-2. Tìm m để a)Hàm số nghịch biến với mọi x thuộc (-1;3) b) Hàm số nghịch biến với mọi x thuộc (2;4)
\(y'=-x^2+2\left(m-3\right)x+m+4\)
a.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:
\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)
Bài toán thỏa mãn khi:
\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
b.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:
\(\forall x\in\left(2;4\right)\) ta có:
\(-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)
\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)
\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)
\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)
Bài 1: Tìm m để:
a) Hàm số y = (m + \(2\sqrt{m}\) + 1)x - 10 là hàm số đồng biến
b) Hàm số y = (\(\sqrt{m}\) - 3)x + 2 là hàm số nghịch biến
a) \(y=\left(m+2\sqrt{m}+1\right)x-10\) là hàm số đồng biến khi: \(\left(m\ge0\right)\)
\(m+2\sqrt{m}+1>0\)
\(\Leftrightarrow\left(\sqrt{m}+1\right)^2>0\) (luôn đúng)
Nên hàm số này luôn là hàm số đồng biến với \(m\ge3\)
b) \(y=\left(\sqrt{m}-3\right)x+2\) là hàm số nghịch biến khi: \(\left(m\ge0\right)\)
\(\sqrt{m}-3< 0\)
\(\Leftrightarrow\sqrt{m}< 3\)
\(\Leftrightarrow m< 9\)
\(\Leftrightarrow0\le m< 9\)