Có bao nhiêu mặt phẳng đi qua điểm M(4;-4;1) và chắn trên ba trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài theo thứ tự lập thành một cấp số nhân có công bội bằng 1/2?
A. 1
B. 2
C. 3
D. 4
Trong mặt phẳng (P). Xét một điểm M tùy ý trong không gian.
a) Có bao nhiêu đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (P)?
b) Đường thẳng d cắt mặt phẳng (P) tại bao nhiêu giao điểm?
a: Có 1 đường duy nhất
b: Đường thẳng d cắt (P) tại 1 giao điểm
Trong không gian Oxyz, cho 4 điểm A(1;0;0), B(-2;0;3), M(0;0;1), N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ B đến gấp hai lần khoảng cách từ A đến Có bao nhiêu mặt phẳng thỏa mãn đề bài?
A. Có hai mặt phẳng(P)
B. Chỉ có một mặt phẳng (P)
C. Không có mặt phẳng (P) nào
D. Có vô số mặt phẳng (P)
Cho điểm A không thuộc đường thẳng d. Lấy hai điểm phân biệt B và C thuộc đường thẳng d (Hình 18).
a) Mặt phẳng đi qua ba điểm A, B, C có đi qua đường thẳng d hay không?
b) Có bao nhiêu mặt phẳng đi qua điểm A và đường thẳng d?
a) Mặt phẳng đi qua ba điểm A, B, C đi qua đường thẳng d
b) Có một và chỉ một mặt phẳng đi qua điểm A và đường thẳng d
Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M và d.
a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?
b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?
a) Có duy nhất một đường thẳng đi qua M song song với d
b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) vì hai đường thẳng song song đồng phẳng
Trong mặt phẳng cho 4 đường thẳng phân biệt đi qua điểm O.Hỏi có bao nhiêu cặp góc đối đỉnh nhỏ hơn góc bẹt.
Cho mặt phẳng (P) và đường thẳng l cắt mặt phẳng (P).
Qua mỗi điểm M trong không gian, có bao nhiêu đường thẳng song song hoặc trùng với đường thẳng l? Đường thẳng đó và mặt phẳng (P) có bao nhiêu điểm chung? (Hình 76)
Qua mỗi điểm M trong không gian, có duy nhất một đường thẳng song song hoặc trùng với đường thẳng ℓ. Đường thẳng đó và mặt phẳng (P) có 1 điểm chung.
Cho hai đường thẳng a và b cắt nhau tại O. Lấy điểm A trên đường thẳng a (A khác O), lấy điểm B trên đường thẳng b (B khác O) (Hình 19).
a) Mặt phẳng đi qua ba điểm A, B, O có đi qua hai đường thẳng a và b hay không?
b) Có bao nhiêu mặt phẳng đi qua hai đường thẳng a và b?
a) Mặt phẳng đi qua ba điểm A. B, O đi qua hai đường thẳng a và b
b) Có một và chỉ một mặt phẳng đi qua hai đường thẳng a và b
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?
A. Chỉ có một mặt phẳng (P).
B. Không có mặt phẳng (P) nào
C. Có hai mặt phẳng (P).
D. Có vô số mặt phẳng (P).
Chọn đáp án D
Giả sử mặt phẳng (P) có vectơ pháp tuyến là n ⇀ = a ; b ; c a 2 + b 2 + c 2 ≠ 0 .
Khi đó phương trình mặt phẳng (P) có dạng a x + b y + c z + d = 0 .
Do M 0 ; 0 ; 1 ∈ P nên c + d = 0 ⇔ d = - c
Do N 0 ; 3 ; 1 ∈ P nên 3 b + c + d = 0 ⇔ b = 0
Khi đó P : a x + c z - c = 0
Từ giả thiết ta có d B ; P = 2 d A ; P
⇔ - 2 a + 2 c a 2 + c 2 = 2 a - c a 2 + c 2 (luôn đúng). Vậy có vô số mặt phẳng (P) thỏa mãn.
Trong một mặt phẳng, có 50 điểm trong đó có 5 điểm thẳng hàng. Có bao nhiêu thẳng đường đi qua 2 điểm?