Có bao nhiêu giá trị nguyên của tham số m để phương trình m x 2 + 2 x 3 − 2 x 2 − 4 x + 2 = 0 có nghiệm đúng với mọi x ≤ − 3 ?
A. 4
B. Không có giá trị nào của m
C. Vô số giá trị của m
D. 6
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Đặt \(\left|x\right|=t\ge0\)
\(\Rightarrow t^2-2t+1-m=0\) (1)
Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t
Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)
Cho phương trình 4 6 + x - x 2 - 3 x = m x + 2 + 2 3 - x với m là tham số. Hỏi có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
A. 10
B. 9
C. 11
D. 8
Chọn đáp án A
Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Cho phương trình: sinx(2-cos2x) - 2(2 cos 3 x + m + 1 ) 2 cos 3 x + m + 2 = 3 2 cos 3 x + m + 2 . Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm x ∈ 0 ; 2 π 3 ?
A. 1
B. 4
C. 2
D. 3
Đáp án là B
Phương trình tương đương với
Xét hàm Ta có đồng biến
Mà suy ra
Đặt u = cosx,
Khi đó phương trình trở thành
Xét
Bảng biến thiên
Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi
Có bao nhiêu giá trị nguyên của tham số m để phương trình 1 + 2 cos x + 1 + 2 sin x = 1 2 m có nghiệm?
A. 3.
B. 5.
C. 4.
D. 2.
Cho phương trình:
sin 3 x + 2 sin x + 3 = 2 c o s 3 x + m 2 c o s 3 x + m - 2 + 2 c o s 3 x + c o s 2 x + m .
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm x ∈ 0 ; 2 π 3 ?
A. 2
B. 1
C. 3
D. 4
Có bao nhiêu giá trị nguyên của tham số m để phương trình 6 + x - 2 - x - 3 + x - 6 - x - 5 - m = 0 có nghiệm thực
A. 0
B. 2
C. 3
D. 1
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-1;7) để phương trình ( m - 1 ) x + ( m + 2 ) x ( x 2 + 1 ) = x 2 + 1 có nghiệm?
A. 6
B. 7
C. 1
D. 5
Có bao nhiêu giá trị nguyên của tham số m để phương trình
\(\sqrt{x+2}+\sqrt{2-x}+2\sqrt{4-x^2}+2m+3=0\) có nghiệm
ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)
Phương trình đã cho trở thành:
\(t+t^2-4+2m+3=0\)
\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)
Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)
\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)
\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-20;20] để phương trình \(\sqrt{2x^2-8x+m}=x-1\) có nghiệm duy nhất
\(\sqrt{2x^2-8x+m}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-8x+m=\left(x-1\right)^2\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+m-1=0\\x\ge1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-6x+m-1=0\left(1\right)\) có nghiệm duy nhất thỏa mãn \(x\ge1\)
\(\left(1\right)\Leftrightarrow m=f\left(x\right)=-x^2+6x+1\)
Đồ thi hàm số \(y=f\left(x\right)=-x^2+6x+1\):
Dựa vào đồ thị ta được \(m=10\)
P/s: Cái này t lười vẽ bảng biến thiên nên vẽ đồ thị đó, chứ bình thường viết trong vở thì dùng bảng biến thiên nhanh hơn nhiều.