Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2017 lúc 4:15

Đáp án C

hằng hồ thị hằng
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 23:49

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:24

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 2 2019 lúc 18:21

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 10:06

\(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{sinx-sin\left(x0\right)}{x-x0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{2\cdot cos\left(\dfrac{x+x0}{2}\right)\cdot sin\left(\dfrac{x-x0}{2}\right)}{x-x_0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{2\cdot sin\left(\dfrac{x-x_0}{2}\right)\cdot cos\left(\dfrac{x+x_0}{2}\right)}{x-x_0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{cos\left(x+x_0\right)}{2}=cos\left(x0\right)\)

=>\(\left(sinx'\right)=cosx\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2019 lúc 8:38

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:23

\(\begin{array}{l}f'(x) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x + {x_0}) - f(x)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}({e^{{x_0}}} - 1)}}{x} = {e^x}.\mathop {\lim }\limits_{x \to 0} \frac{{{e^{{x_0}}} - 1}}{x} = {e^x}.1 = {e^x}\\ \Rightarrow f'(x) = {e^x}\end{array}\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:24

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln x - \ln {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\ln \frac{x}{{{x_0}}}}}{{\ln e}}}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}}\\ = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{u \to 0} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{{{x_0}\ln e}}\\ \Rightarrow \left( {\ln x} \right)' = \frac{1}{{x\ln e}} = \frac{1}{x}\end{array}\)