Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2019 lúc 3:31

Đáp án A.

Phương pháp: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x0 là: 

Cách giải: Ta có: 

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 1 là: 

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:26

a)     \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b)    \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c)     \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

Mai Anh
Xem chi tiết
Khôi Bùi
11 tháng 5 2022 lúc 21:57

Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)

Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)

\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\)  \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) 

Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)

Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)

 

Mai Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 10:46

y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2

(d1)//(d)

=>(d1): y=1/2x+b

=>y'=1/2

=>(x+1)^2=4

=>x=1 hoặc x=-3

Khi x=1 thì f(1)=0

y-f(1)=f'(1)(x-1)

=>y-0=1/2(x-1)=1/2x-1/2

Khi x=-3 thì f(-3)=(-4)/(-2)=2

y-f(-3)=f'(-3)(x+3)

=>y-2=1/2(x+3)

=>y=1/2x+3/2+2=1/2x+7/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2018 lúc 3:51

Đáp án D.

Có x − 1 x + 2 = 0 ⇔ x = 1.  Có  y ' = 3 x + 2 2  

Giao với đồ thị hàm số với trục Ox là  1 ; 0 .

Phương trình tiếp tuyến tại 1 ; 0 .  có phương trình là:

                        y = y ' 1 x − 1 + y 1 = 1 3 x − 1 ⇔ x − 3 y − 1 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2019 lúc 7:40

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

d: Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) có hệ số góc k = 1/2 ⇒ Tiếp tuyến có hệ số góc k = 1/2.

- Gọi ( x 0 ,   y 0 )  là toạ độ của tiếp điểm.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 14:06

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 8:18

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

Với x = –2 ta có: y = –3 và y'(2) = 2.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2017 lúc 8:04

Ta có hệ số góc là

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 5 2017 lúc 10:30

Đáp án D                  

y ' = 3 x 2 − 1 ⇒ y ' 1 = 3 .1 2 − 1 = 2  

Phương trình tiếp tuyến của (C) tại điểm M(1;2) là:  y = y ' 1 . x − 1 + 2  hay y = 2x.