Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Trần Thị Bích Trâm
6 tháng 4 2017 lúc 20:29

Định lí. Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0)

có biệt thức ∆ = b2 – 4ac.

- Nếu ∆ < 0 thì với mọi x, f(x) có cùng dấu với hệ số a.

- Nếu ∆ = 0 thì f(x) có nghiệm kép x = , với mọi x ≠ , f(x) có cùng dấu với hệ số a.

- Nếu ∆ > 0, f(x) có 2 nghiệm x1, x2 (x1 < x2) và luôn cùng dấu với hệ số a với mọi x ngoài đoạn [x1; x2] và luôn trái dấu với hệ số a với mọi x trong đoạn (x1; x2).

Sách Giáo Khoa
Xem chi tiết
Doraemon
30 tháng 3 2017 lúc 10:56

Trần Nguyễn Bảo Quyên
30 tháng 3 2017 lúc 11:01

Cách nhận biết đa thức

\(f\left(x\right)=ax^2+bx+c\)

Có nghiệm hay vô nghiệm

Lập \(\Delta\) ( đọc là delta )

\(\Delta=b^2-4ac\)

Nếu \(\Delta< 0\) : đa thức vô nghiệm

Nếu \(\Delta\ge0\) : đa thức có nghiệm

Nếu \(\Delta>0\) : đa thức có hai nghiệm

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

Chi
Xem chi tiết
Nguyễn Quang Nhật Huy
5 tháng 2 2021 lúc 21:11

vote cho mk xong rồi mk trả lời cho, tin mk đi, mk ko phải n xấu đâu

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2017 lúc 18:26

Xét tam thức f(x) = b2x2 - (b2 + c2 - a2)x + c2 có:

Δ = (b2 + c2 - a2)2 - 4b2c2

    = (b2 + c2 - a2 - 2bc)(b2 + c2 - a2 + 2bc)

    = [(b - c)2 - a2][(b + c)2 - a2]

    = (b – c – a)(b – c + a)(b + c + a)(b + c – a).

Do a, b, c là 3 cạnh của tam giác nên theo bất đẳng thức tam giác ta có:

    b < c + a ⇒ b – c – a < 0

    c < a + b ⇒ b – c + a > 0

    a < b + c ⇒ b + c – a > 0

    a, b, c > 0 ⇒ a + b + c > 0

⇒ Δ < 0 ⇒ f(x) cùng dấu với b2 ∀x hay f(x) > 0 ∀x (đpcm).

•Ƙεɱ ɗâʉ⁀ᶦᵈᵒᶫ
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
12 tháng 7 2019 lúc 10:14

5. Dấu hiệu ( định lí ) nhận biết 2 đường thẳng song song:

+ Nếu đường thẳng c cắt hai đường thẳng a,b và trong các góc tạo thành có 1 cặp góc so le trong bằng nhau ( hoặc góc đồng vị bằng nhau ) thì a và b song song với nhau 

6. Tiên đề Ơ - clit về đường thẳng song song: 

Qua 1 điểm nằm ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó 

7, Định lí về hài đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3

Nếu 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau 

8. Tính chất ( định lí ) của 2 đường thẳng song song:

Nếu 1 đường thẳng cắt 2 đường thẳng song song thì 

1. Hai góc đồng vị bằng nhau 

2. Hai góc so le trong bằng nhau 

3. Hai góc trong cùng phía bù nhau 

Huỳnh Quang Sang
12 tháng 7 2019 lúc 10:23

5. Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng song song.

                                  \(\widehat{A_1}=\widehat{B}_1\Rightarrow a//b\)

- Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc đồng vị bằng nhau thì hai đường thẳng song song.

                                    \(\widehat{A}_3=\widehat{B}_1\Rightarrow a//b\)

- Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc trong cùng phía bù nhau thì hai đường thẳng song song.

                                   \(\widehat{A}_2+\widehat{B}_1=180^0\Rightarrow a//b\)

a A 1 2 3 b c 1 B

Huỳnh Quang Sang
12 tháng 7 2019 lúc 10:30

6.Qua một điểm nằm ngoài đường thẳng,chỉ có một đường thẳng song song với đường thẳng đó

7. Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau \(\hept{\begin{cases}a\perp b\\b\perp c\end{cases}\Rightarrow}a//b\)

8.Nếu một đường thẳng cắt hai đường thẳng // thì :

a, 2 góc so le trong bằng nhau

b, 2 góc đồng vị bằng nhau

c, 2 góc trong cùng phía bù nhau

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2017 lúc 15:46

- Trường hợp 1 (c.c.c):

Định lí: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

- Trường hợp 2 (c.g.c):

Định lí: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.

- Trường hợp 3 (g.g):

Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:41

a) Từ đồ thị ta thấy \({x^2} + 2x + 1 \ge 0\forall x\)

Và \({x^2} + 2x + 1 > 0\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)

b) Từ đồ thị ta thấy \( - {x^2} + 4x - 4 \le 0\forall x\)

Và \( - {x^2} + 4x - 4 < 0\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\}\)

c) Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với dấu của hệ số a, với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:40

a) Ta thấy đồ thị nằm trên trục hoành nên \(f\left( x \right) = {x^2} - 2x + 2 > 0\).

b) Ta thấy đồ thị nằm dưới trục hoành nên \(f\left( x \right) =  - {x^2} + 4x - 5 < 0\).

c) Ta thấy \(f\left( x \right) = {x^2} - 2x + 2\) có hệ số a=1>0 và \(f\left( x \right) = {x^2} - 2x + 2 > 0\)

\(f\left( x \right) =  - {x^2} + 4x - 5\) có hệ số a=-1

Như thế, khi \(\Delta  < 0\) thì tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) cùng dấu với hệ số a.

Sách Giáo Khoa
Xem chi tiết
Quang Duy
22 tháng 4 2017 lúc 16:00

- Trường hợp 1 (c.c.c):

Định lí: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

- Trường hợp 2 (c.g.c):

Định lí: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.

- Trường hợp 3 (g.g):

Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

Lưu Hạ Vy
22 tháng 4 2017 lúc 16:00

- Trường hợp 1 (c.c.c):

Định lí: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

- Trường hợp 2 (c.g.c):

Định lí: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.

- Trường hợp 3 (g.g):

Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.