Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 6:40

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

evelynn
Xem chi tiết
~*Shiro*~
17 tháng 4 2021 lúc 21:33

M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)

=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16

Min M= 16 khi  z=1/2 và  x=y =1/4

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 10:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2019 lúc 6:21

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2018 lúc 12:46

Từ giả thiết ta suy ra

Xét hàm số  f ( t ) = 5 t - 1 3 t + t   với  t   ∈ ℝ ,   f ' ( t ) = 5 t . ln 5 + 3 - t . ln 3 + 1 > 0 ;   ∀ t ∈ ℝ

Suy ra y= f( t) là hàm số đồng biến trên R mà từ ( * ) suy ra

f (x+ 2y) =f( xy-1)  hay x+ 2y= xy-1

với x>0 suy ra y>1.

Khi đó

 

Xét hàm số

  f ( y ) = y 2 + y + 1 y - 1   t r ê n   1 ; + ∞ f ' y = y 2 - 2 y - 2 y - 1 2 = 0 ⇔ y = ± 1 + 3 f 1 + 3 = 3 + 2 3 ;   lim y → 1 f ( y ) = lim y → + ∞ f ( y ) = + ∞

Do đó, giá trị nhỏ nhất của hàm số là  3 + 2 3 .

Vậy kết quả là  3 + 2 3

Chọn B.

Kem Su
Xem chi tiết
Tran Le Khanh Linh
17 tháng 5 2020 lúc 17:00

Vì x,y là số thực dương nên theo BĐT Cosi ta có:

\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3

GT: x+y+xy=15 => xy=15-(x+y)

Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)

Dấu "=" xảy ra <=> x=y=3

Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)

Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Phạm Hỏa Băng
Xem chi tiết
Trần Diệu Linh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 16:11

\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)

\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

Nguyễn Việt Lâm
7 tháng 5 2021 lúc 21:39

Trước hết áp dụng BĐT: \(ab\le\dfrac{1}{4}\left(a+b\right)^2\)

Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+1+\sqrt{y}+1\right)^2\)

Mà \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\Rightarrow\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\)

Lại áp dụng tiếp: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Ta được: \(\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\)

\(\Rightarrow\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\ge2\)

Bình phương lên: \(2\left(x+y\right)\ge4\Rightarrow x+y\ge2\)

Phần cuối chắc là hoàn toàn cơ bản rồi