Tìm m để hàm số y = m - sin x cos 2 x nghịch biến trên khoảng ( 0 ; π 6 ) .
A..
B..
C..
D..
Tìm m để hàm số \(y=\sqrt{\dfrac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in[-\dfrac{\pi}{2};\dfrac{\pi}{2}]\)
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Tìm tất cả các giá trị của tham số m để hàm số y = x + m ( sin x + c o s x ) đồng biến trên R
A. m < - 1 2 ∪ m > 1 2
B. - 1 2 ≤ m ≤ 1 2
C. - 3 < m < 1 2
D. m ≤ - 1 2 ∪ m ≥ 1 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = s i n x − m x nghịch biến trên R
A. m < 1
B. m > − 1
C. m > 1
D. m ≥ 1
Đáp án D
Ta có y ' = cos x − m .
Hàm số nghịch biến trên R
⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.
Tìm m để hàm số \(y=\sqrt{\dfrac{sin2x-cos2x+m-1}{6\left(cos^4x+sin^4x\right)+cos8x+7-5m}}\) xác định với mọi số thực x
\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\)
Hàm xác định trên R khi:
TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
tìm m để hàm số \(y=\sqrt{sin^2x-2sinx+m-1}\) xác định trên R
Hàm số xác định trên \(R\Leftrightarrow\sin^2x-2\sin x+m-1\ge0,\forall x\in R\left(\text{*}\right)\)
Đặt \(x=t\)
Ta có \(-1\le\sin x\le1\Rightarrow-1\le t\le1\)
\(\left(\text{*}\right)\Leftrightarrow t^2-2t+m-1\ge0,\forall t\in\left[-1;1\right]\\ \Leftrightarrow t^2-2t+1+m-2\ge0\\ \Leftrightarrow\left(t-1\right)^2\ge2-m,\forall t\in\left[-1;1\right]\\ \Leftrightarrow2-m\le Min\left(t-1\right)^2\)
Với \(t\in\left[-1;1\right]\Leftrightarrow0\le\left(t-1\right)^2\le4\)
\(\Leftrightarrow2-m\le0\\ \Leftrightarrow m\ge2\)
Vậy \(m\ge2\) thì hàm số xác định trên \(R\)
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
b) Tìm m để hàm số nghịch biến
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
b: Để hàm số y=(1-m)x+m-2 nghịch biến trên R thì 1-m<0
=>m>1
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
Có bao nhiêu giá trị thực của tham số m để hàm số y = cos x + m . sin x + 1 cos x + 2 có giá trị lớn nhất bằng 1
A. 0
B. 1
C. 2
D. 3
Tìm m để hàm số sau xác định\(\forall x\in R:y=\sqrt{sin^4x+cos^4x-2msinxcosx}\)