Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Tìm giá trị lớn nhất của các hàm số sau :
a) \(y=\sqrt{2\left(1+\cos x\right)}+1\)
b) \(y=3\sin\left(x-\dfrac{\pi}{6}\right)-2\)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
1) \(sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
2) \(tanx=sin^2x\left(c-\frac{\pi}{2010}\right)+cos^2\left(2x+\frac{\pi}{2010}\right)+sinx.sin\left(3x+\frac{\pi}{1005}\right)\)
3) \(1+2cosx\left(sinx-1\right)+\sqrt{2}sinx+4cosx.sin^2\frac{x}{2}=0\)
4) \(3cos4x-8cos^6x+2cos4x=3\)
5) \(1+sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)\)
6) \(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-4\sqrt{3}cos^2x.sinx.cos2x\)
7) \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{4}\right)\)
8) \(cos^4x+sin^4x+cos\left(x-\frac{\pi}{4}\right).sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)
Giải phương trình sau:
a) $\tan ^2x+4\cos ^2x+7=4\tan x+8\cot x$
b) $6\sin ^2x+2\cos ^2x-2\sqrt{3}\sin 2x=14\sin \left(x-\frac{\pi }{6}\right)$
\(\cos\left(x+\frac{\pi}{5}\right)+\sqrt{3}sin\left(x+\frac{\pi}{5}\right)=0\left(x\in\text{[}-2020\pi;\frac{\pi}{2}\text{]}\right)\)
Số giá trị nguyên của m để pt có nghiệm trên \([\frac{\pi}{-4};\frac{\pi}{4}]\) \(2\sin^2x-\sin X\cos X-M\cos^2x=1\)
Giải các phương trình sau
1) \(\cos^5\frac{x}{2}\)\(\sin\frac{x}{2}\) - \(\sin^5\frac{x}{2}\)\(\cos\frac{x}{2}\) = \(\frac{\sqrt{3}}{8}\)
2) 8\(\cos x.\cos\left(\frac{\pi}{3}+x\right).\cos\left(\frac{\pi}{3}-x\right)\) = \(\sqrt{3}\)
3) \(\frac{1}{\cos x}+\frac{1}{\sin2x}=\frac{2}{\sin4x}\)
Xác định tính chẵn lẻ của các hàm số :
a) \(y=\sin^3x-\tan x\)
b) \(y=\dfrac{\cos x+\cot^2x}{\sin x}\)
Giải phương trình : \(\sqrt{3}cos\left(x+\frac{\pi}{2}\right)+sin\left(x-\frac{\pi}{2}\right)=2sin2x\) .