Bài 1: Cho hai hàm số
a) Tìm tập xác định của hàm số đã cho
b) Tính f(2); f(1/2), g(0), g(1), g(1/2)
Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).
a) Tìm tập xác định của mỗi hàm số đã cho.
b) Mỗi hàm số trên liên tục trên những khoảng nào? Giải thích.
a) • \(y = f\left( x \right) = \frac{1}{{x - 1}}\)
ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)
Vậy hàm số có tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
• \(y = g\left( x \right) = \sqrt {4 - x} \)
ĐKXĐ: \(4 - x \ge 0 \Leftrightarrow x \le 4\)
Vậy hàm số có tập xác định: \(D = \left( { - \infty ;4} \right]\).
b) • Với mọi \({x_0} \in \left( { - \infty ;1} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{x - 1}} = \frac{{\mathop {\lim }\limits_{x \to {x_0}} 1}}{{\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}} = \frac{1}{{{x_0} - 1}} = f\left( {{x_0}} \right)\)
Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;1} \right)\).
Tương tự ta có hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1; + \infty } \right)\).
Ta có: Hàm số không xác định tại điểm \({x_0} = 1\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x - 1}} = - \infty \)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
Vậy hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
• Với mọi \({x_0} \in \left( { - \infty ;4} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 4 - \mathop {\lim }\limits_{x \to {x_0}} x} = \sqrt {4 - {x_0}} = g\left( {{x_0}} \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;4} \right)\).
Ta có: \(g\left( 4 \right) = \sqrt {4 - 4} = 0\)
\(\mathop {\lim }\limits_{x \to {4^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {4^ - }} 4 - \mathop {\lim }\limits_{x \to {4^ - }} x} = \sqrt {4 - 4} = 0 = g\left( 4 \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại điểm \({x_0} = 4\).
Hàm số không xác định tại mọi \({x_0} \in \left( {4; + \infty } \right)\) nên hàm số \(y = g\left( x \right)\) không liên tục tại mọi điểm \({x_0} \in \left( {4; + \infty } \right)\).
Vậy hàm số \(y = g\left( x \right)\) liên tục trên nửa khoảng \(\left( { - \infty ;4} \right]\).
Cho hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) có \(f(0) = 1,f(1) = 2,f(2) = 5.\)
a) Hãy xác định giá trị của các hệ số \(a,b\) và \(c.\)
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Tham khảo:
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
Bài 1: cho hàm số y=f(x)=ax, biết đồ thị của hàm số đi qua điểm A(2;1) (vẽ đồ thị hàm số hộ mình)
a) Hãy xác định hệ số a
b) Tính f(-2); f(4); f(0)
Bài 2: Thời gian làm một bài tập Toán của một số học sinh lớp 7 (tính bằng phút) được thống kê bởi bảng sau:
5 6 7 4 5 6
5 8 8 8 9 7
6 5 5 5 4 10
a) Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu?
b) Lập bảng Tần số. Tính số trung bình công?
c) Tìm Mốt của dấu hiệu?
Bài 1:
a: Thay x=2 và y=1 vào y=ax, ta được: 2a=1
hay a=1/2
Vậy: f(x)=1/2x
b: f(-2)=1/2x(-2)=-1
f(4)=1/2x4=2
f(0)=0
Cho hàm số y = f ( x ) = ax ( a khác 0 ) đi qua điểm (1;2)
a) Hãy xác định hàm số y
b) Tính f(1); f(1/2); f(-1/2);
c) Vẽ đồ thị của hàm số đã tìm trên mặt phẳng tọa độ Oxy
a: Thay x=1 và y=2 vào f(x),ta được:
\(a\cdot1=2\)
hay a=2
Vậy: f(x)=2x
b: f(1)=2
f(1/2)=1
f(-1/2)=-1
Cho hàm số y = f ( x ) = ax ( a khác 0 ) đi qua điểm (1;2)
a) Hãy xác định hàm số y
b) Tính f(1); f(1/2); f(-1/2);
c) Vẽ đồ thị của hàm số đã tìm trên mặt phẳng tọa độ Oxy
Cho hàm số y = f ( x ) = ax ( a khác 0 ) đi qua điểm (1;2)
a) Hãy xác định hàm số y
b) Tính f(1); f(1/2); f(-1/2);
c) Vẽ đồ thị của hàm số đã tìm trên mặt phẳng tọa độ Oxy
Cho hàm số y = f ( x ) = ax ( a khác 0 ) đi qua điểm (1;2)
a) Hãy xác định hàm số y
b) Tính f(1); f(1/2); f(-1/2);
c) Vẽ đồ thị của hàm số đã tìm trên mặt phẳng tọa độ Oxy
Cho hàm số y = f ( x ) = ax ( a khác 0 ) đi qua điểm (1;2)
a) Hãy xác định hàm số y
b) Tính f(1); f(1/2); f(-1/2);
c) Vẽ đồ thị của hàm số đã tìm trên mặt phẳng tọa độ Oxy
Cho hàm số y = f(x) = ( m-1) . x ( m khác 1)
a, Xác định công thức hàm số đã cho biết đồ thị hàm số đó đi qua điểm A(1;3)
b, Tính f(-1); f(\(\frac{-1}{2}\))
c, Tìm x để f(x) = 5; f(x) = 4