Tìm các giá trị của tham số m để đồ thị hàm số y = x 4 - 2 m x 2 + m có 3 điểm cực trị. Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn nội tiếp lớn hớn 1.
A. m < -1
B. m > 2 hoặc m < -1
C. m > 2
D. m > 0
cho hàm số bậc nhất y=(m-2)x+m+1 ( với m là tham số m khác 2 ) a) tìm các giá trị của m để đồ thi hàm số đã cho đi qua A(1;-1) b) tìm các giá trị của m đẻ đồ thị của m để đồ thị hàm số đã cắt cho đường thẳng y=x+2 tại 1 điểm trên trục hoành
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số y=(m+1)x
a) Tìm các giá trị của tham số m để tham số nhận giá trị bằng -5 tại x=5 ,
b) Với giá trị nào của m thì đồ thị hàm số đi qua điểm A(2;3)?
c)Tìm giá trị của m để điểm B(0;4) thuộc đồ thị hàm số.
Tìm các giá trị của tham số m để đồ thị hàm số y =mx^4 +(2m-1)x^2 +m -2 chỉ có 1 cực đại và ko có cực tiểu.
- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)
- Với \(m\ne0\) hàm chỉ có cực đại khi:
\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)
Vậy \(m\le0\)
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x + 1 m 2 x 2 − m − 2 có bốn đường tiệm cận.
A. m ≠ 0 m < − 2
B. m ∉ 0 ; − 1 m ≥ − 2
C. m ∉ 0 ; − 1 ; 2 m > − 2
D. m ≠ 2 m > − 2
Tìm tất cả các giá trị tham số m để hai đồ thị hàm số \(y=-x^2-2x+3\) và \(y=x^2-m\) có điểm chung
Để hai đồ thi có điểm chung thì
\(-2x^2-2x+m+3=0\) có nghiệm
\(\Leftrightarrow4-4\cdot\left(-2\right)\left(m+3\right)>=0\)
\(\Leftrightarrow4+8m+24>=0\)
hay m>=-7/4
Tìm các giá trị của tham số m để đồ thị hàm số y = ( m - 1 ) x + m 3 x + m 2 nhận đường thẳng y=2 làm tiệm cận ngang.
A.m=7
B.m=6
C.m=4
D.m=5
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
cho hai hàm số bậc nhất là y=(1+m)x-m và y=2021x-2. Tìm các giá trị của tham số m để đồ thị hai hàm số đã cho song song với nhau.
Để hai đường thẳng song song thì m+1=2021
hay m=2020
cho hàm số y=2mx+m+2 (m là tham số)
tìm tất cả các giá trị của m để đồ thị hàm số đó song song với đường thẳng y=(m^2-3)x+2m-1
Trả lời :
Bn Do Phuong Mai đừng bình luận linh tinh nhé !
- Hok tốt !
^_^