Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ruby Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 21:53

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

35 Cang Tiểu Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 15:36

Xét ΔABC có

\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

Xem chi tiết
Xem chi tiết
Nguyễn Hoàng Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2021 lúc 13:29

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

Xem chi tiết

cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh : Tứ giác MNCB là hình thang cân.

b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?

c) Chứng minh : N là trọng tâm của tam giác CMD.

d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.       

Hân Nguyễn
Xem chi tiết
Đặng Võ Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 18:39

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MNCB là hình thang

b: Xét tứ giác MNCD có 

MN//CD

MN=CD

Do đó: MNCD là hình bình hành

c: Xét tứ giác ADCE có 

N là trung điểm của AC
N là trung điểm của DE

Do đó:ADCE là hình bình hành

Trần Hương Trà
Xem chi tiết
Tô Mì
11 tháng 9 2021 lúc 14:16

a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)

Vậy: MNCB là hình thang (đpcm)

==========

b/ Do MN là đường trung bình của △ABC

Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)

==========

c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)

- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)

Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)