Hàm số y = 1 + cos 2 x đạt giá trị nhỏ nhất tại x = x o . Mệnh đề nào sau đây là đúng?
Cho hàm số f(x) = x - 1 2 a x 2 + 4 a x - a + b - 2 , với a,b ∈ ℝ . Biết trên khoảng - 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1. Hỏi trên đoạn - 2 ; - 5 4 , hàm số đạt giá trị nhỏ nhất tại giá trị nào của x?
A. x = - 5 4
B. x = - 4 3
C. x = - 3 2
D. x = -2
Chọn C
Tập xác định của hàm số là ℝ .
Ta có:
Vì trên khoảng - 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.
Khi đó f'(x) = 0 ( đều là các nghiệm đơn)
Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:
=> x = - 3 2 là điểm cực tiểu duy nhất thuộc - 2 ; - 5 4
Vậy hàm số đạt giá trị nhỏ nhất tại x = - 3 2 trên đoạn - 2 ; - 5 4
Cho hàm số f x = x − 1 2 a x 2 + 4 a x − a + b − 2 , với a , b ∈ ℝ . Biết trên khoảng − 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1. Hỏi trên đoạn − 2 ; − 5 4 hàm số đạt giá trị nhỏ nhất tại
A. x = − 2.
B. x = − 3 2 .
C. x = − 4 3 .
D. x = − 5 4 .
Hàm số y = x + 2 + 2 - x + 2 4 - x 2 đạt giá trị lớn nhất, giá trị nhỏ nhất tại điểm có hoành độ là:
A. 2 2 + 4 ; 2 .
B. 2 2 - 2 ; 2 .
C. 2 2 ; 2 .
D. 4; 2
TXD: D=[-2;2].
Đặt:
t = x + 2 + 2 - x ( 2 ≤ t ≤ 2 2 ) ⇒ 2 4 - x 2 = 2 2 - x 2 + x = t 2 - 4
Khi đó hàm số trở thành:
y = f ( t ) = t 2 + t - 4 và có đạo hàm f ' ( t ) = 2 t + 1 > 0 trên D
=> hàm số đồng biến với mọi t ∈ [ 2 ; 2 2 ]
Do đó; min y = f(2)=2
m a x y = 4 + 2 2
Chọn A
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=sin\dfrac{2x}{x^2+1}+cos\dfrac{x}{x^2+1}+1\)
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
A. m = - 1 2 ; M = 1
B. m = 1 ; M = 2
C. m = - 2 ; M = 1
D. m = - ; M = 2
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
Tìm x để hàm số đạt giá trị nhỏ nhất
a)\(y=\left(sinx+3\right)^2-1\)
b)\(y=1-3\sqrt{1-cos^2x}\)
a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)
\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
Hàm số y = x 4 + a x 3 + b x 2 + 1 đạt giá trị nhỏ nhất tại x=0. Giá trị nhỏ nhất của biểu thức S= a + b là
A. 2
B. 0
C. -2
D. -1
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Cho hàm số f(x). Biết hàm số y=f '(x) có đồ thị như hình bên. Trên đoạn [-4;3], hàm số g ( x ) = 2 f ( x ) + ( 1 - x ) 2 đạt giá trị nhỏ nhất tại điểm
A..
B..
C..
D..
Chọn B
Ta có
.
.
Dựa vào hình vẽ ta có:.
Và ta có bảng biến thiên
Suy ra hàm số đạt giá trị nhỏ nhất tại điểm