a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)
\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)
\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau
a)\(y=\left(3-sinx\right)^2+1\)
b)\(y=sin^4x+cos^4x\)
c)\(y=sin^6x+cos^6x\)
c1 gia trị nhỏ nhât của hàm số \(y=\sqrt{5-4cosx}\) trên \(\left[-\dfrac{\pi}{3},\dfrac{\pi}{2}\right]\)( cai này tui tìm được là can 3 mà ko bik đúng hay sai
c2 cho pt \(\left(\sqrt{3}+1\right)cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx-\sqrt{3}=0\). Gọi T là tổng các nghiệm thuộc \(\left[0,2\pi\right]\) của pt đã cho
c3 tìm tất cả các giá trị của m để hàm số f(x)=\(\sqrt{sin^2x-4cosx+2m}\) có tập xác định là R
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
1.Tìm tập xác định của hàm số: y= \(\sqrt{1+sinx-2cos^2x}\)
2. Cho hàm số: y = \(\sqrt{sin^4x+cos^4x-2msinx.cosx}\)
Tìm các giá trị của m để xác định với mọi x.
Tìm tập xác định của các hàm số sau:
1,\(y=sin\dfrac{3x+2}{2x-1}\)
2,\(y=tan\left(3x+\dfrac{2\pi}{5}\right)\)
3,\(y=cot\left(2x-\dfrac{1}{3}\right)\)
4,\(y=\dfrac{sinx+cosx}{sinx-cosx}\)
5,\(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\)
6,\(y=\dfrac{\sqrt{1-sinx}}{cosx}\)
7,\(y=\dfrac{3}{sin^2x-cos^2x}\)
8,\(y=\dfrac{1+tanx}{1+sinx}\)
9,\(y=\sqrt{\dfrac{1+sinx}{1-cosx}}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = 2\(\cos\)(x + \(\frac{\pi}{3}\))\(+\)3 ; b) y = \(\sqrt{1-\sin\left(x^2\right)}-\)1
Tìm GTLN; GTNN của các hàm số:
\(a,y=2sin^2x-cos2x\)
\(b,y=3\sqrt{1+sinx}-1\) trên đoạn \(\left[0;\dfrac{\pi}{3}\right]\)