Tìm x thỏa mãn điều kiện: 2 x - 3 x - 1 = 2
Tìm các số hữu tỉ x thỏa mãn điều kiện | x+1 | + | x +2 | + | x +3 | + | x + 4 | = 5x
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\left(1\right)\)
Ta có :
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge\left|x+1+x+2+x+3+x+4\right|=\left|4x+10\right|\)
\(pt\left(1\right)\Leftrightarrow\left|4x+10\right|=5x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+10=5x\\4x+10=-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\9x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\) \(\left(thỏa.mãnx\inℚ\right)\)
Tìm cặp số thực x, y thỏa mãn điều kiện \(\sqrt{x-1} + \sqrt{3-x} = y^2 + 2\sqrt{2020y} +2022\)
Lời giải:
Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$
$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$
Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$
Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)
tìm cặp số thực x,y thỏa mãn điều kiện:
\(\sqrt{x-1}\)+\(\sqrt{3-x}=y^2+2\sqrt{2020}y+2022\).
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)
`Answer:`
`1/5+2/7-1<x<\frac{13}{3}+6/5+\frac{4}{15}`
`VT =1/5+2/7-1=\frac{17}{35}-1=\frac{-18}{35}`
`VP=\frac{13}{3}+6/5+\frac{4}{15}=\frac{83}{15}+\frac{4}{15}=\frac{203}{35}`
`=>\frac{-18}{35}<x<\frac{203}{35}`
`=>-18<x<203`
Vậy `-18<x<203` với `x\inZZ`
Tìm các số nguyên x thỏa mãn điều kiện: 1/5 + 2/7 - 1 < x < 13/3 + 6/5 + 4/15
\(\dfrac{1}{5}+\dfrac{2}{7}-1< x< \dfrac{13}{3}+\dfrac{6}{5}+\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{7}{35}+\dfrac{10}{35}-\dfrac{35}{35}< x< \dfrac{65}{15}+\dfrac{18}{15}+\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{-18}{35}< x< \dfrac{29}{5}\)
\(\Leftrightarrow\dfrac{-18}{35}< \dfrac{35x}{35}< \dfrac{203}{35}\)
\(\Leftrightarrow-18< 35x< 203\)
\(\Leftrightarrow x\in\left\{0;1;2;3;4;5\right\}\)
tìm x,y nguyên thỏa mãn điều kiện y(x-1)=x^2+2
Tìm x thỏa mãn điều kiện: 4 x + 3 x + 1 = 3
Tìm x thỏa mãn điều kiện: 4 x + 3 x + 1 = 3
Tìm các cặp số nguyên x, y thỏa mãn điều kiện x(x-2)-(2-x).y-2.(x-2) =3
<=> (x-2)(x+y-2)=3
=>\(\hept{\begin{cases}x-2=1\\x+y-2=3\end{cases};\hept{\begin{cases}x-2=-1\\x+y-2=-3\end{cases};\hept{\begin{cases}x-2=3\\x+y-2=1\end{cases};\hept{\begin{cases}x-2=-3\\x+y-2=-1\end{cases}}}}}\)
=> \(\hept{\begin{cases}x=3\\y=2\end{cases};\hept{\begin{cases}x=1\\y=-2\end{cases};\hept{\begin{cases}x=5\\y=-2\end{cases};\hept{\begin{cases}x=-1\\y=2\end{cases}}}}}\)