Biểu thức ( x - 1 + y - 1 ) - 1 bằng xy
A. xy
B. 1 x y
C. x y x + y
D. x + y x y
cho biểu thức A = (x+y) (x-1)+x(2-x-y)+1
a, rút gọn biểu thức
b, tính giá trị biểu thức khi x=1 y=1/2
\(1+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{2^2}\)
\(1+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{2^2}\)
a) Trong các biểu thức sau, biểu thức nào là đơn thức:
\(\dfrac{1}{5}x{y^2}{z^3};3 - 2{{\rm{x}}^3}{y^2}z; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2};\dfrac{1}{2}{x^2}\left( {{y^3} - {z^3}} \right)\)
b) Trong những biểu thức sau, biểu thức nào là đa thức:
\(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1;\dfrac{{x - y}}{{x{y^2}}};\dfrac{1}{x} + 2y - 3{\rm{z}}\)
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức
1 Biểu thức đại số biểu thị cho tích của x và y là
A.x+y B .x-y C.x/y D.x.y
2 biểu thức nào sau đây không phải đơn thức
A.2 B .x C. x+1 D xy^2
3 Bậc của đơn thức -x^2yz^3 là :
A 5 B 6 C 7 D 8
4 Đơn thức 3x^2y^3z1/3xyz^2 có bậc là :
A.10 B 9 C 8 D 7
5 Đơn thức 3x^2y^2 đồng dạng với đơn thức nào đây ?
A 3x^2y^ B-x^2y^2 C 0x^2y^2 D 2xyz
6 đơn thức đồng dạng với đơn thức 2x^2yz là
A 2x^2y^3 B2 x^2y C -x^2y^2 D 2xyz
Câu 1: D
Câu 2: C
Câu 3: B
Câu 4: D
Cho biểu thức :C=(x+y).(x+1).(y+1)
Tính giá trị biểu thức biết x+y=3 và x.y=-5
ta có :
c = (x+y) * (xy +x+y+2)
c = 3 * ( -5 ) + 3 + 2
c= -10
Cho các biểu thức 2x+y+x²y ; -3xy²z³ + 1/2 x²y²z ; x+y/x-y . Có bao nhiêu đa thức trong các biểu thức trên ?
A.0.
B.1.
C.2.
D.3.
BT2: Trong các biểu thức sau, biểu thức nào là đơn thức?
\(\left(1-\dfrac{1}{\sqrt{3}}\right)x^2,\dfrac{1}{2}\left(x^2-1\right),\dfrac{x^2.7}{2},6\sqrt{y},\dfrac{1-\sqrt{5}}{x},\dfrac{x-y^2}{4}\)
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
cho biểu thức A = 2x(x + y) - x +7 - y
a)Tính giá trị của biểu thức A tại x = -1 và y = 3
b)Tính giá trị của biểu thức A tại x = -1 và |y| = 3
a) Thay x = -1 và y = 3 vào A, ta được :
A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3
A = -2.2 + 1 + 4
A = -4 + 5
A = 1
b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
*Thay x =-1 và y = 3 vào biểu thức :
Phần này bạn sẽ làm ý như câu a vậy :33
*Thay x = -1 và y =-3 vào A, ta được :
A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)
A = -2.(-4) + 1 + 7 + 3
A = 8 + 11
A = 19
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự