a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
Tính giá trị của các biểu thức sau :
a, A =(x-3)(x+7)-(2x-5)(x-1) với x=0, x=1x =0
b,B =(3x+ 5) (2x-1)+(4x-1)(3x+2) với [x] =2
c,C=(2x+y)(2z+y)+(x-y)(y-z )với x=1, y=1,z=[1]
Tính giá trị của các biểu thức sau :
a, A =(x-3)(x+7)-(2x-5)(x-1) với x=0, x=1x =0
b,B =(3x+ 5) (2x-1)+(4x-1)(3x+2) với |x| =2
c,C=(2x+y)(2z+y)+(x-y)(y-z )với x=1, y=1,z= |1|
1)Với x+y=1, giá trị của biểu thức x^3+y^3 +3xy bằng bao nhiêu
2)cho hình thang ABCD có góc A= góc D =90 độ, M là trung điểm của BC khi đó góc MAB…….. góc MDC
3)với x - y = 1 thì giá trị của biểu thức x^3 - y^3 - 3xy
4)nếu a + b + c = 0 và abc = -2 thì a^3 + b^3 + c^3 bằng bao nhiêu
Rút gọn biểu thức sau
(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2
2.Tính
a)(2+xy)^2
b) (5-3x)^2
c) (5-x^2)(5+x^2)
d) (5x-1)^3
e) (2x-y)(4x^2+2xy+y^2)
3.Rút gọn các biểu thức sau:
a) (a+b)^2 -(a-b)^2
b) (a+b)^3 -(a-b)^3-2b^3
c) (x+y+z)^2 -2(x+y+z)(x+y)+(x+y)^2
P/s:giúp mình giải nhé!!! giải theo 7 hằng đẳng thức đáng nhớ.
1. Rút gọn biểu thức :
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
( Có công thức mấy bạn ghi ra giúp tớ với )
2. Biết số tự nhiên a chia cho 5 dư 4. C/m a^2 chia cho 5 dư 1
3. Tìm giá trị lớn nhất của các đa thức :
a) A= 4x-x^2+3
b) B= x- x^2
c) F= 2x-2x^2-5
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
1.tìm x,y biết x2-4x+5+y2+2y=0
2. thực hiện phép tính sau: 2p.p2-(p3-1)+(p+3)2p2-3p5
3.đơn giản biểu thức: (0.2a3)2-0.01a4(4a2-100)
4.chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:
a) x(2x+1)-x2(x+20)+(x3-x+3)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)
5. chứng minh rằng các biểu thức sau đây bằng 0:
a) x(y-z)+y(z-x)+z(x-y)
b) x(y+z-yz)-y(z+x-xz)+z(y-x)
6. Tỉm đa thức M biết: M+(12x4-15x2y+2xy2+7)=0
cho a, b, c là 3 số cố định và các số thực x, y, z thỏa mãn y+z=a, z+x=b, x+y=c
a) biểu diễn ab theo x, y, z
b) chứng minh giá trị biểu thức P = x2 + y2 + z2 +3xy + 3yz + 3zx không đổi khi x, y, z thay đổi
các bạn giải giùm mình câu b , mình cảm ơn !!!!!