Giải phương trình 2 1 - e - 2 x = 4 .
A. x=ln2
B. x = 1 2 ln 2
C. x = 1 4 ln 2
D. x = - ln 2
Giải các phương trình sau:
a) \({2^x} = \frac{1}{{{2^{x + 1}}}};\)
b) \(2{e^{2x}} = 5.\)
\(a,2^{3x-1}=2^{-\left(x+1\right)}\Rightarrow3x-1=-\left(x+1\right)\Rightarrow x=\dfrac{1}{2}\)
\(b,ln\left(2e^{2x}\right)=ln5\)
\(\Rightarrow ln2+lne^{2x}=ln5\)
\(\Rightarrow ln2+2x=ln5\)
\(\Rightarrow2x=ln5-ln2=ln\dfrac{5}{2}\)
Như vậy \(x=\dfrac{1}{2}ln\dfrac{5}{2}\)
Câu 2: Cho phương trình: (m2 - 4) x+m+2=0
a. Tìm m để phương trình nhận x=1 làm nghiệm.
b. Giải và biện luận phương trình theo m.
giúp e với a
a: Thay x=1 vào pt, ta được:
\(m^2-4+m+2=0\)
=>(m+2)(m-1)=0
=>m=-2 hoặc m=1
b: \(\left(m^2-4\right)x+m+2=0\)
\(\Leftrightarrow\left(m^2-4\right)x=-\left(m+2\right)\)
Trường hợp 1: m=2
=>Phươg trình vô nghiệm
Trường hợp 2: m=-2
=>Phương trình có vô số nghiệm
Trường hợp 3: \(m\notin\left\{-2;2\right\}\)
=>Phương trình có nghiệm duy nhất là \(x=\dfrac{-m+2}{m+2}\)
Câu 2: Cho phương trình: (m2 - 4) x+m+2=0
a. Tìm m để phương trình nhận x=1 làm nghiệm.
b. Giải và biện luận phương trình theo m.
giúp e với a
a, Thay x = 1 ta đc
\(m^2-4+m+2=0\Leftrightarrow\left(m+2\right)\left(m-2\right)+m+2=0\)
\(\Leftrightarrow\left(m+2\right)\left(m-1\right)=0\Leftrightarrow m=-2;m=1\)
giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
Giải các phương trình sau:
a) \({3^{x - 1}} = 27;\)
b) \({100^{2{x^2} - 3}} = 0,{1^{2{x^2} - 18}};\)
c) \(\sqrt 3 {e^{3x}} = 1;\)
d) \({5^x} = {3^{2x - 1}}.\)
\(a,3^{x-1}=27\\ \Leftrightarrow3^{x-1}=3^3\\ \Leftrightarrow x-1=3\\ \Leftrightarrow x=4\\ b,100^{2x^2-3}=0,1^{2x^2-18}\\ \Leftrightarrow10^{4x^2-6}=10^{-2x^2+18}\\ \Leftrightarrow4x^2-6=-2x^2+18\\ \Leftrightarrow6x^2=24\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
\(c,\sqrt{3}e^{3x}=1\\ \Leftrightarrow e^{3x}=\dfrac{1}{\sqrt{3}}\\ \Leftrightarrow3x=ln\left(\dfrac{1}{\sqrt{3}}\right)\\ \Leftrightarrow x=\dfrac{1}{3}ln\left(\dfrac{1}{\sqrt{3}}\right)\)
\(d,5^x=3^{2x-1}\\ \Leftrightarrow2x-1=log_35^x\\ \Leftrightarrow2x-1-xlog_35=0\\ \Leftrightarrow x\left(2-log_35\right)=1\\ \Leftrightarrow x=\dfrac{1}{2-log_35}\)
Cho phương trình x² + 3x + 1 - m = 0. Tìm m để phương trình có 2 nghiệm x₁, x₂ thoã mãn x₁ᒾ + x₂ᒾ = 17.
Giải chi tiết từng bước giúp e với ạ🌷😭
\(\Delta=9-4\left(1-m\right)=4m+5\)
Pt có 2 nghiệm khi: \(4m+5\ge0\Rightarrow m\ge-\dfrac{5}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=1-m\end{matrix}\right.\)
\(x_1^2+x_2^2=17\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)
\(\Leftrightarrow9-2\left(1-m\right)=17\)
\(\Leftrightarrow2m=10\)
\(\Rightarrow m=5\) (thỏa mãn)
Giải phương trình 2x2 - (m+3)x + m =0
a)Giải phương trình với m=2
b)Tìm giá trị của m để phương trình có 2 nghiệm phân biệt x1 , x2 sao cho E= | 2017x1 - 2017x2 | đạt giá trị nhỏ nhất
Câu a bạn thay m bằng 2 vào pt
câu B bạn có thể làm nhứ vậy
* xét dentail
* áp dụng viet vào biểu thức :
\(E=\)/ \(2017x_1-2017x_2\)/
\(\Leftrightarrow E=\) \(\left(2017x_1-2017x_2\right)^2\)
\(\Leftrightarrow E=\left(2017\left(x_1-x_2\right)\right)^2\)
\(\Leftrightarrow E=2017^2\left(x_1-x_2\right)^2\)
Bạn làm tiếp nha
Giải các phương trình sau:
a,|-5x|+|7-x|=27
b,|3x-1|+|x+4|=21
c,2|3x|-5|x+2|=-7
d,|3x-5|+2=|15-3x|
e,|2x+1|-|5-3x|=2
`e)(x+2)(x+3)=5-x+x(x-1)-2`
`<=>x^2+3x+2x+6=5-x+x^2-x-2`
`<=>7x=-3`
`<=>x=-3/7`
`f)(2x-3)(3-x)+(x-1)^2=1-(x+3)(x-3)`
`<=>6x-2x^2-9+3x+x^2-2x+1=1-x^2+9`
`<=>7x=17`
`<=>x=17/7`
`j)3(x+1)(x-1)=3(x^2+2x)+1`
`<=>3x^2-3=3x^2+6x+1`
`<=>6x=-4`
`<=>x=-2/3`
giải và biện luận phương trình \(x^2-2\left(m+1\right)x+2m+10=10\) (hộ e với chi tiết càng tốt ạ)
\(x^2-2\left(m+1\right)x+2m+10=10\)
\(\Leftrightarrow x^2-\left(2m+2\right)x+2m=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m=4m^2+8m+4-8m=4m^2+4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)
- Với \(m^2-9< 0\Leftrightarrow-3< m< 3\) pt vô nghiệm
- Với \(m^2-9=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\) pt có nghiệm kép tương ứng \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
- Với \(m^2-9>0\Rightarrow\left[{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\) pt có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m^2-9}\\x_2=m+1+\sqrt{m^2-9}\end{matrix}\right.\)