Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
huy tạ

giải và biện luận phương trình \(x^2-2\left(m+1\right)x+2m+10=10\) (hộ e với chi tiết càng tốt ạ)

Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 23:16

\(x^2-2\left(m+1\right)x+2m+10=10\)

\(\Leftrightarrow x^2-\left(2m+2\right)x+2m=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m=4m^2+8m+4-8m=4m^2+4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Nguyễn Việt Lâm
5 tháng 3 2022 lúc 23:19

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)

- Với \(m^2-9< 0\Leftrightarrow-3< m< 3\) pt vô nghiệm

- Với \(m^2-9=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\) pt có nghiệm kép tương ứng \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

- Với \(m^2-9>0\Rightarrow\left[{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\) pt có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m^2-9}\\x_2=m+1+\sqrt{m^2-9}\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Thị Tường Vy
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
D.S Gaming
Xem chi tiết
Alicia Hestia
Xem chi tiết
zun zun
Xem chi tiết
Đỗ Tuệ Lâm
Xem chi tiết
Cá Lệ Kiều
Xem chi tiết
My Nguyễn
Xem chi tiết