Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2017 lúc 14:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2017 lúc 14:47

Đáp án D.

Phương pháp

Sử dụng tập giá trị của hàm y = sin x :   1 ≤ sin x ≤ 1  để đánh giá hàm số bài cho

Cách giải

Ta có: 

− 1 ≤ s i n   x ≤ 1 ⇒ − 1 ≤ − s i n   x ≤ 1

2 − 1 ≤ 2 − s i n   x ≤ 2 + 1 ⇔ 1 ≤ 2 − s i n   x ≤ 3 ⇒ M = 3 ; m = 1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2019 lúc 16:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2019 lúc 3:40

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 4 2017 lúc 11:04

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2019 lúc 12:12

Đáp án C

Phương pháp:

Biến đổi hàm số về hàm số bậc hai đối với cos x , đặt cos x = t và tìm GTLN, GTNN của hàm số với chú ý

Cách giải:

Ta có:  y = 2 sin 2 x − cos x + 1

= 2 1 − cos 2 x − cos x + 1 = − 2 cos 2 x − cos x + 3

Đặt t = cos x − 1 ≤ t ≤ 1

y t = − 2 t 2 − t + 3 ⇒ y ' t = − 4 t − 1

y ' 0 = 0 ⇔ t = − 1 4 ∈ − 1 ; 1

⇒ M = max y = y − 1 4 = 25 8 ; m = min y = y 1 = 0 ⇒ M + m = 25 8

Chú ý khi giải:

HS thường nhầm lẫn khi tìm GTLN, GTNN của hàm số, hoặc ở bước đặt ẩn phụ quên không đặt điều kiện cho ẩn mới.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2018 lúc 12:41

nguyễn quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 23:17

\(M=2\cdot\left(1-cos^2x\right)-cosx+1\)

\(=-2\cdot cos^2x-cosx+1\)

\(=-2\cdot\left(cos^2x+\dfrac{1}{2}cosx-\dfrac{1}{2}\right)\)

\(=-2\cdot\left(cos^2x+2\cdot cosx\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)

\(=-2\cdot\left(cosx+\dfrac{1}{4}\right)^2+\dfrac{9}{8}\)
-1<=cosx<=1

=>-3/4<=cosx+1/4<=5/4

=>0<=(cosx+1/4)^2<=25/16

=>0>=-2*cos(x+1/4)^2>=-25/8

=>9/8>=-2*cos(x+1/4)^2+9/8>=-25/8+9/8=-16/8=-2

=>M=9/8; m=-2

=>M+m=-7/8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2018 lúc 3:05

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2019 lúc 11:47

Đáp án B.

ĐK:  0 ≤ x ≤ 1 . Với điều kiện này ta thấy rằng tử là nghịch biên (x tăng thì giá trị tử giảm đi) còn mẫu là đồng biến và mẫu dương (x tăng thì mẫu tăng theo) vì vậy tổng thể hàm y  là hàm nghịch biến. Do đó M = max x ∈ 0 ; 1 y = y 0 = 1 ; m = min x ∈ 0 ; 1 y = y 1 = − 1  vậy  M − m = 2.