Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Yến
Xem chi tiết
mordon sofia
5 tháng 7 2018 lúc 21:39

Mình đánh là pt trên là (*) nhé:

Đầu tiên mình sd công thức biến tổng thành tích

(*) <=> 2cosxcosπ/3=1

<=> cosx=1

<=> x=k2π

LY SA
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 5 2020 lúc 17:03

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

Lê Thị Thanh Tân
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2020 lúc 20:24

1.

\(cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=\frac{3}{4}\)

2.

\(1+tan^2x=\frac{1}{cos^2x}\Rightarrow cosx=\frac{1}{\sqrt{1+tan^2x}}=\frac{3}{5}\)

\(sinx=\sqrt{1-cos^2x}=\frac{4}{5}\)

3.

\(sina=\sqrt{1-cos^2a}=\frac{2\sqrt{2}}{3}\)

\(tana=\frac{sina}{cosa}=2\sqrt{2}\)

\(cota=\frac{1}{tana}=\frac{\sqrt{2}}{4}\)

Lê Thảo Linh
Xem chi tiết
Việt Thắng Phạm
Xem chi tiết
lê phương linh
Xem chi tiết
Kiều Vũ Linh
6 tháng 3 2023 lúc 11:28

Bài 1

Lỗi:

1) Program bai 1; => sửa: Program bai1;

2) Var x; n: integer; => sửa: Var x, n:integer;

3) X = 12 => sửa: x:=12;

-------------------

Bài 2

Lỗi

1) Program 2bai; => sửa: Program bai2;

2) Var i, n, s:integer;

3) S:=0 => sửa S:=0;

4) For i:=0,5 to n do => sửa: For i:=1 to 5 do

5) S=S+i; => sửa: S:=S+i;

Nguyễn Khánh Ly
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Hoàng Tử Hà
17 tháng 1 2021 lúc 10:38

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

Hoàng Tử Hà
17 tháng 1 2021 lúc 10:56

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

Hoàng Tử Hà
17 tháng 1 2021 lúc 11:18

3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)

\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)

Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)

\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)

I=A+B=...

 

li saron
Xem chi tiết
li saron
20 tháng 1 2017 lúc 20:52

giúp mình nha

Ngô Thành Chung
Xem chi tiết
Ngô Thành Chung
12 tháng 8 2021 lúc 9:45

Đừng dùng đạo hàm hay gì nhá