Tìm giá trị nhỏ nhất của M=a+ √a
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
\(A=m^2-2m-5\)
\(=m^2-2m+1-6\)
\(=\left(m-1\right)^2-6\ge-6\)
Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(Min_A=-6\) khi \(m=1\)
\(A=m^2-2m-5\)
\(=\left(m^2-2m+1\right)-6\)
\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)
Min \(A=-6\Leftrightarrow m=1\)
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
`A=m^2-2m-5`
`A=m^2-2m+1-6`
`A=(m-1)^2-6`
Vì `(m-1)^2 >= 0 AA m`
`=>(m-1)^2-6 >= -6 AA m`
Hay `A >= -6 AA m`
Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`
Vậy `GTN N` của `A` là `-6` khi `m=1`
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
\(minM=1998\Leftrightarrow a=b=1\)
Bài 3 : Cho tam giác ABC vuông tại A có AB = AC = a . Điểm M chuyển động trên
cạnh BC , gọi D và E thứ tự là hình chiếu của M trên AB và AC .
a)Tìm vị trí của M để S ADME đạt giá trị lớn nhất tính giá trị lớn nhất đó theo a .
b) Tìm vị trí của M để DE đạt giá trị nhỏ nhất tính giá trị nhỏ nhất đó theo a .
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.
Cách làm như sau:
\(4M=4a^2+4ab+4b^2-12a-12b+8004\)
\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)
\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)
\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)
Vậy 4M min = 7992, vây M min = 1998.
Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Tìm giá trị của m để biểu thức A=m2-m+1. Tìm giá trị nhỏ nhất
ta thấy:m2\(\ge\)0
=>m2-m\(\ge\)0-m
=>m2-m+1\(\ge\)-m+1
=>A\(\ge\)-m+1
vậy Amin=3 khi m=0