Phương trình z 4 - 1 có bao nhiêu nghiệm trên tập số phức?
A. 3
B. 4
C. 2
D. 1
Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
trên tập hợp số phức, xét phương trình \(z^2\)-2(2m-1)z+\(m^2\)=0. Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt z1,z2 thỏa mãn \(z1^2\)+\(z2^2\)=2
\(z^2-2\left(2m-1\right)z+m^2=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
Ta có :
\(z^2_1+z_2^2=2\)
\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)
\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)
\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)
\(\Leftrightarrow14m^2-16m+2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)
Ta có phương trình bậc hai trên tập số phức:
z^2 - 2(2m-1)z + m^2 = 0
Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:
z1 + z2 = 2(2m-1) và z1z2 = m^2
Từ phương trình z1^2 + z2^2 = 2, ta suy ra:
(z1+z2)^2 - 2z1z2 = 4
Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:
(2(2m-1))^2 - 2m^2 = 4
Đơn giản hóa biểu thức ta có:
m^2 - 4m + 1 = 0
Suy ra:
m = 2 + √3 hoặc m = 2 - √3
Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.
Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.
Phương trình z 4 - 1 có bao nhiêu nghiệm trên tập số phức?
A. 1
B. 2
C. 4
D. 3
Cho phương trình trên tập họp số phức z 2 + a x + b = 0 . Nếu phương trình nhận số phức z = 1 + i làm một nghiệm thì a và b bằng.
A. a = -2, b = 2
B. a = 1, b = 5
C. a = 2, b = -2
D. a = 2, b = -4
Cho phương trình trên tập họp số phức z 2 + a z + b = 0 a , b ∈ ℝ . Nếu phương trình nhận số phức z = 1 + i làm một nghiệm thì a và b bằng.
A. a = -2, b = 2
B. a = 1, b = 5
C. a = 2, b = -2
D. a = 2, b = -4
Chọn A.
Phương pháp: Thế nghiệm vào phương trình và sử dụng định nghĩa về hai số phức bằng nhau.
Cách giải: Thay nghiệm z = 1+ i vào phương trình ta có:
Trên đường tròn lượng giác, tập nghiệm của phương trình cos2x + 3sinx – 2 = 0 được biểu diễn bởi bao nhiêu điểm ?
A. 1. B. 4.
C. 2. D. 3.
trên tập hợp số phức,xét phương trình z2-4az+b2+2=0 (a,b là các tham số thực).Có bao nhiêu cặp số thực (a;b) sao cho phương trình đó có 2 nghiệm z1,z2 thoả mãn z1+2iz2=3+3i
Do \(z_1;z_2\) là 2 nghiệm của pt, đặt \(z_1=x+yi\Rightarrow z_2=x-yi\)
Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2x=4a\\z_1z_2=x^2+y^2=b^2+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2a\\x^2+y^2=b^2+2\end{matrix}\right.\) (1)
\(z_1+2i.z_2=3+3i\Leftrightarrow x+yi+2i\left(x-iy\right)=3+3i\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\y+2x=3\end{matrix}\right.\) \(\Rightarrow x=y=1\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=0\end{matrix}\right.\) \(\Rightarrow\) có 1 cặp số thực thỏa mãn
Trên tập hợp các số phức, xét phương trình z2+(a−2)z +a2-2a (với a là tham số thực) có hai nghiệm phân biệt z1, z2. Có bao nhiêu giá trị của a để |z1-z2|=|z1+z2|
Δ=(a-2)^2-4(a^2-2a)
=-3a^2+4a+4
Để phương trình có hai nghiệm phân biệt thì -3a^2+4a+4<>0
=>a<>2 và a<>-2/3
|z1-z2|=|z1+z2|
=>(z1-z2)^2=(z1+z2)^2
=>z1z2=0
=>a^2-2a=0
=>a=0(nhận) hoặc a=2(loại)
=>Có 1 giá trị
Mệnh đề nào sau đây sai?
A. Số phức z = a + bi là nghiệm của phương trình x 2 - 2ax + ( a 2 + b 2 ) = 0
B. Mọi số phức đều là nghiệm của một phương trình bậc hai với hệ số thực
C. Mọi phương trình bậc hai với hệ số thực đều có hai nghiệm trong tập số phức C (hai nghiệm không nhất thiết phân biệt)
D. Mọi phương trình bậc hai với hệ số thực có ít nhất một nghiệm thực