Tìm giới hạn C = l i m ( 1 + 3 x ) 3 - ( 1 + 2 x ) 2 x .
A. 25
B. 20
C. 5
D. 15
Cho hàm số \(f\left(x\right)=x^2-2x+3\) . Khẳng định nào sau đây là sai:
A, Hàm số có giới hạn trái và phải tại điểm x=1 bằng nhau
B, Hàm số có giới hạn trái và phải tại mọi điểm bằng nhau
C, Hàm số có giới hạn tại mọi điểm
D, Cả ba khẳng định trên là sai
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+3\Leftrightarrow x\le1\\\dfrac{x+m}{x}\Leftrightarrow x>1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1^-}x^2-x+3=1^2-1+3=3\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\dfrac{1+m}{1}=m+1\)
Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\)
\(\Leftrightarrow m+1=3\Leftrightarrow m=2\)
Vậy ...
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Leftrightarrow\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\lim\limits_{x\rightarrow1^-}\left(x^2-x+3\right)\\ \Leftrightarrow m+1=3\Leftrightarrow m=2\)
Cho hàm số y=f(x) =1/√(2-x). Khẳng định nào sau đây đúng:
A. Hàm số chỉ có giới hạn tại điểm x=2
B. Hàm số có giới hạn trái và giới hạn phải bằng nhau
C. Hàm số có giới hạn tại điểm x=2
D. Hàm số chỉ có giới hạn trái tại điểm x=2
Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái
Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)
Trên 1 cái móng dài 8m rộng 40cm, người ta muốn xây 1 bức tường dài 8m rộng 22cm. Áp suất tối đa mà nền đất chịu được là 120000pa, KLR bức tường là 2000kg/m3. Tính chiều cao giới hạn của bức tường
Đổi: \(22cm=0,22m\)
Diện tích tiếp xúc của bức tường và móng là:
\(S=8.0,22=1,76\left(m^2\right)\)
Trọng lượng của bức tường là:
\(p=\dfrac{P}{S}\Leftrightarrow120000=\dfrac{P}{1,76}\\ \Leftrightarrow P=211200\left(N\right)\)
Khối lượng của bức tường là:
\(m=\dfrac{P}{10}=\dfrac{211200}{10}=21120\left(kg\right)\)
Chiều cao giới hạn của bức tường là:
\(D=\dfrac{m}{V}\Leftrightarrow D=\dfrac{m}{S.h}\Leftrightarrow2000=\dfrac{21120}{1,76.h}\Leftrightarrow h=\dfrac{21120}{2000.1,76}=6\left(m\right)\)
Vậy chiều cao giới hạn của bức tường là: 6m
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-1}{x-1}\Leftrightarrow x< 1\\mx+2\Leftrightarrow x\ge1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1^-}\dfrac{x^3-1}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}x^2+x+1=1^2+1+1=3\)
\(\lim\limits_{x\rightarrow1^+}mx+2=\lim\limits_{x\rightarrow1^+}m+2\)
Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\)
\(\Leftrightarrow m+2=3\\ \Leftrightarrow m=1\)
Vậy ...
Tìm m để \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+mx-m-3}-x}{x^2-5x+4}\) là một số hữu hạn và tìm giới hạn đó.
Để giới hạn đã cho hữu hạn
\(\Rightarrow\sqrt{x^2+mx-m-3}-x=0\) có nghiệm \(x=4\)
\(\Rightarrow\sqrt{16+4m-m-3}-4=0\)
\(\Rightarrow\sqrt{3m+13}=4\Rightarrow m=1\)
Khi đó:
\(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+x-4}-x}{x^2-5x+4}=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-1\right)\left(x-4\right)\left(\sqrt{x^2+x-4}+x\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\left(x-1\right)\left(\sqrt{x^2+x-4}+x\right)}=\dfrac{1}{3\left(\sqrt{4^2+4-4}+4\right)}=\dfrac{1}{24}\)
Giúp mình nha^^
1. Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y=\(\sqrt{ }\)x, y=0, y= 2 - x quanh trục Ox là:
2. Diện tích hình phẳng giới hạn bởi (C): x^2+3x-2, d1: y= x -1 và d2: y= -x+2 có kết quả là:
A.1/8 B.2/7 C.1/12 D.1/6
3.Cho f(x)= 4m/pi + sin^2x. Tìm m để nguyên hàm F(x) của f(x) thỏa mãn F(0)=1 và F(pi/4)= pi/8
A.m=-4/3 B.m=3/4 C.-3/4 D.m=4/3
Tìm các giới hạn sau lim x^3-1/x^2-2x+1
Cho (O1; R1) và (O2; R2) tiếp xúc ngoài với nhau và tiếp xúc trong với 1 (O; R) sao cho 3 tâm của 3 đường tròn thẳng hàng. Phần tiếp tuyến chung của (O1)(O2) giới hạn trong (O) có độ dài l. Tính S của hình tạo bởi các phần ở ngoài (O1), (O2) và ở trong (O) theo l