Tìm x thuộc N* thỏa mãn:
a) 2 3 < 88 x < 11 16
b) 3 − 7 < − 60 x < − 15 37
Bài 1: Tìm x thỏa mãn:
a) 9x2-1=3(3x-1)
b) (x2-3x+2)2+(-x2+4x-4)3-(x-2)3=0
\(a,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-3\left(3x-1\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^2\left(x-1\right)^2-\left(x-2\right)^2-\left(x-2\right)^3=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(x-1\right)^2-1-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-2\right)^2\left(x^2-2x+1-1-x+2\right)=0\\ \Leftrightarrow\left(x-2\right)^2\left(x^2-3x+2\right)=0\\ \Leftrightarrow\left(x-2\right)^3\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Tìm các số tự nhiên x thỏa mãn:
a) 6 ⋮ (x – 1); b) (x + 11) ⋮ (x + 1). b) 24Mx ; 36Mx ; 160Mx và x lớn nhất.
c) 64Mx ; 48Mx ; 88Mx và x lớn nhất. d) xM 4; x M7; xM 8 và x nhỏ nhất khác 0
e) x M60 ; x M 45 ; x M 16 0 < x < 2000 f) x ⋮ 4; x ⋮ 6 và 0 < x < 50;
g) x ⋮ 12; x ⋮ 18 và x ≤ 144;
a: \(\Leftrightarrow x-1\in\left\{-1;1;2;3;6\right\}\)
hay \(x\in\left\{0;2;3;4;7\right\}\)
b: \(\Leftrightarrow x+1\in\left\{1;2;5;10\right\}\)
hay \(x\in\left\{0;1;4;9\right\}\)
c: x=UCLN(64;48;88)=8
g: \(x\in BC\left(12;18\right)\)
mà x<=144
nên \(x\in\left\{0;36;72;108;144\right\}\)
Help me pls:"))
Tìm đa thức B(x) thỏa mãn:A(x)=B(x).Q(x)-x+1
Biết A(x)=x^3-2x^2+x Q(x)=x-1
`@` `\text {Ans}`
`\downarrow`
Ta có:
`A(x) = B(x)* Q(x) - x + 1`
`A(x) = x^3-2x^2+x`; `Q(x) = x - 1`
`<=> B(x) * (x - 1) - x + 1 = x^3 - 2x^2 + x`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + x + x - 1`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + 2x - 1`
`<=> B(x) = (x^3 - 2x^2 + 2x - 1) \div (x - 1)`
`<=> B(x) = x^2 - x + 1`
Vậy, `B(x) = x^2 - x + 1.`
A(x)=B(x)*Q(x)-x+1
=>x^3-2x^2+x=B(x)(x-1)-x+1
=>B(x)*(x-1)=x^3-2x^2+x+x-1=x^3-2x^2+2x-1
=>\(B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)}{x-1}\)
=>B(x)=x^2+x+1-2x
=>B(x)=x^2-x+1
Ta có:
\(A\left(x\right)=B\left(x\right)\cdot Q\left(x\right)-x+1\)
\(\Leftrightarrow B\left(x\right)\cdot Q\left(x\right)=A\left(x\right)+x-1\)
\(\Leftrightarrow B\left(x\right)=\dfrac{A\left(x\right)+x-1}{Q\left(x\right)}\)
Mà: \(A\left(x\right)=x^3-2x^2+x\) và \(Q=x-1\) thay vào ta có:
\(\Leftrightarrow B\left(x\right)=\dfrac{x^3-2x^2+x+x-1}{x-1}\)
\(\Leftrightarrow B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}\)
\(\Leftrightarrow B\left(x\right)=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{x-1}\)
\(\Leftrightarrow B\left(x\right)=x^2-x+1\)
tìm x thỏa mãn:
a) (x2+2)(x-4)-(x+2)3=-16
b) 7x3+3x2-3x+1=0
c) x3+3x2+3x+28=0
a: Ta có: \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)^3=-16\)
\(\Leftrightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Leftrightarrow-10x^2-10x=0\)
\(\Leftrightarrow-10x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^3+3x^2+3x+28=0\)
\(\Leftrightarrow\left(x+1\right)^3=-27\)
\(\Leftrightarrow x+1=-3\)
hay x=-4
Tìm số tự nhiên x biết:
a) x – 32 : 16 = 48
b) 88 – 3.(7+x) = 64
c) (5+4x) : 3 – 121 : 11 = 4
d) 15 – 2(3x+1) = 11.13 – 130
a) x – 32 : 16 = 48 ó x – 2 = 48 ó x = 48 + 2 ó x = 50
b) 88 – 3.(7+x) = 64 ó 3.(7+x) = 88 – 64 ó 7 + x = 24:3 ó x = 8 – 7 ó x = 1
c) (5+4x) : 3 – 121 : 11 = 4 ó (5+4x) : 3 – 11 = 4 ó (5+4x) : 3 = 4 + 11 ó 5+4x = 15.3 ó 4x = 45 – 5 ó 4x = 40 ó x = 10
d) 15 – 2(3x+1) = 11.13 – 130 ó 15 – 2(3x+1) = 143 – 130 ó 15 – 2(3x+1) = 13
ó 2(3x+1) = 15 – 13 ó 3x + 1 = 2:2 ó 3x = 1 – 1 ó 3x = 0 ó x = 0
Tìm cặp số nguyên (X;y) thỏa mãn:
a,|2x+1|+|y-1|=4
b,y^2=3-|2x-3
c,(x-3).(y-5)= -7
Tìm cặp số nguyên (X;y) thỏa mãn:
a,|2x+1|+|y-1|=4
b,y^2=3-|2x-3
c,(x-3).(y-5)= -7
tìm x thỏa mãn:
a) (x+2)(x+3)-(x-2)(x-5)=-4
b) (x+1)(x2-x+1)-x(x-3)(x+3)=8
c) 4x2-9=(3x+1)(2x-3)
d) (3x+1)2-4(x-1)2=0
a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x-5\right)=-4\)
\(\Leftrightarrow x^2+5x+6-x^2+7x-10=-4\)
\(\Leftrightarrow12x=0\)
hay x=0
b: Ta có: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow x^3+1-x^3+9x=8\)
\(\Leftrightarrow9x=7\)
hay \(x=\dfrac{7}{9}\)
c: Ta có: \(4x^2-9=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x+1-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
Tìm hai số nguyên x thỏa mãn:
a) \({x^2} = 4\)
b) \({x^2} = 81\)
a) \({x^2} = 4\)
\(x^2=(\pm 2)^2\)
\(x=2\) hoặc \(x=-2\)
Vậy \(x \in\) {2;-2}
b) \({x^2} = 81\)
\(x^2=(\pm 9)^2\)
\(x = 9\) hoặc \(x = - 9\).
Vậy \(x \in\) {9;-9}
Tìm các số nguyên dương x biết:
a)\(\dfrac{19}{-23}\)\(< \dfrac{-19}{x}\)\(< \dfrac{19}{-29}\) b)\(\dfrac{2}{3}\)\(< \dfrac{88}{x}\)\(< \dfrac{11}{16}\) c)\(\dfrac{4}{x}\)\(< \dfrac{x}{8}\)\(< \dfrac{5}{x}\)
a: =>19/23>19/x>19/29
=>\(x\in\left\{24;25;26;27;28\right\}\)
b: =>88/132<88/x<88/128
=>132>x>128
=>\(x\in\left\{131;130;129\right\}\)
c: =>\(\left\{{}\begin{matrix}\dfrac{4}{x}-\dfrac{x}{8}< 0\\\dfrac{x}{8}-\dfrac{5}{x}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{32-x^2}{8x}< 0\\\dfrac{x^2-40}{8x}< 0\end{matrix}\right.\)
=>32<x^2<40
=>x=6