X+4=10
X=?
P=x^10-10x^9+10x^8-10x^7+10x^6-10x^5+10x^4-10x^3+10x^2-10x+10
tisng P với x+9
G = x^4 + 10x^3 + 10x^2 + 10x + 10 khi x= -9
\(G=x^4+10x^3+10x^2+10x+10\)
\(=x^4+10\left(x^3+x^2+x+1\right)\)
\(=\left(-9^4\right)+10\left[\left(-9\right)^3+\left(-9\right)^2+-9+1\right]\)
\(=6561+10\cdot-656\)
\(=6561-6560\)
\(=1\)
Thay `x=-9` vào biểu thức G:
`G=(-9)^4+10.(-9)^3+10.(-9)^2+10.(-9)+10`
`=6561-7290+810-90+10`
`=1`
Do \(x=-9\Rightarrow x+9=0\)
Ta có:
\(G=\left(x^4+9x^3\right)+\left(x^3+9x^2\right)+\left(x^2+9x\right)+\left(x+9\right)+1\)
\(=x^3\left(x+9\right)+x^2\left(x+9\right)+x\left(x+9\right)+\left(x+9\right)+1\)
\(=x^3.0+x^2.0+x.0+0+1=1\)
Giải các pt sau
1/ x^4 -10x^3 +26x^2 -10x+1=0
2/ x^4 +5x^3 +10x^2+ +15x+9=0
`1)x^4 -10x^3 +26x^2 -10x+1=0`
`x=0=>VT=1=>x=0(l)`
Chia 2 vế cho `x^2>0` ta có
`x^2-10x+26-10/x+1/x^2=0`
`=>x^2+1/x^2+26-10(x+1/x)=0`
`=>(x+1/x)^2-10(x+1/x)+24=0`
Đặt `a=x+1/x`
`pt<=>a^2-10a+24=0`
`<=>` $\left[ \begin{array}{l}a=4\\a=6\end{array} \right.$
`a=4<=>x+1/x=4<=>x^2-4x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt3+2\\x=-\sqrt3+2\end{array} \right.$
`a=6<=>x+1/x=6<=>x^2-6x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt8+3\\x=-\sqrt8+3\end{array} \right.$
Vậy `S={\sqrt3+2,-\sqrt3+2,\sqrt8+3,-\sqrt8+3}`
2)Do hệ số chẵn bằng=hệ số lẻ
`=>x=-1`
`pt<=>x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0`
`<=>(x+1)(x^3+4x^2+6x+9)=0`
`<=>(x+1)(x^3+3x^2+x^2+6x+9)=0`
`<=>(x+1)[x^2(x+3)+(x+3)^2]=0`
`<=>(x+1)(x+3)(x^2+x+3)=0`
Do `x^2+x+3=(x+1/2)^2+11/4>0`
`=>` $\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.$
Vậy `S={-1,-3}`
Tính gt của bt
A= \(x^5-5x^4+5x^3-5x^2+5x-1\) với x = 4
B = \(x^7-80x^6+80x^5-80x^4+....+80x+15\)với x = 79
C= \(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)với x = 9
D = \(x^{10}-25x^9+25x^8-25x^7+...+25x^2-25x+25\)với x = 24
thiếu 1 câu
A= x5−5x4+5x3−5x2+5x−1x5−5x4+5x3−5x2+5x−1 với x = 4
= x5−(x+1)x4+(x+1)x3−(x+1)x2+(x+1)x−1
= x5−x5−x4+x4+x3−x3+x2−x2+x−1
=x−1=4−1=3
Tương tự với các câu B,C,D
Tính giá trị biểu thức :
P(x) = x^7 - 80x^6 + 80x^5 - 80x^4 +.......+ 80x + 15 với x = 79
Q(x) = x^14 - 10x^13 + 10x^12 - 10x^1+.....+ 10x^2 - 10x + 10 với x=9
a) Ta có: \(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-x^6\left(x+1\right)+x^5\left(x+1\right)-...+x\left(x+1\right)+15\)
\(=x^7-x^7-x^6+x^6+x^5-...+x^2+x+15\)
\(=x+15\)
Thay x=79 vào biểu thức \(P\left(x\right)=x+15\), ta được:
\(P\left(79\right)=79+15=94\)
Chứng minh:- x^2 + 3x - 4 < 0 với mọi số thực x
Tính A= x^16 - 10x^15 + 10x^14- 10x^13 + ....+ 10x^2 - 10x = 10 với x=9
---- Mấy bn giải nhanh bài này dùm mk với!!!
tính giá trị biểu thức:
B=x^4-10x^13+10x^12-10x^11+...+10x^2-10x+10
chứng minh
(x+a)(x+b)(x+c)=x^3+(a+b+c)x^2+(ab+ac+bc)x+abc
1 ) Nếu \(x=9\Rightarrow10=x+1\)
Thay \(10=x+1\) vào B , ta được :
\(B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Leftrightarrow B=1\)
2 ) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+ax^2+bx^2+abx+x^2c+axc+bxc+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+axc+bcx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+x\left(ab+ac+bc\right)+abc\)
\(\left(đpcm\right)\)
:D
Cho f(x) = \(x^6-10x^5+10x^4-10x^3+10x^2-10x+10\) Tính f(9)
\(f\left(x\right)=x^6-10x^5+10x^4-10x^3+10x^2-10x+10\)
\(f\left(x\right)=x^5\left(x-10\right)+x^3\left(x-10\right)+x\left(x-10\right)+10\)
\(f\left(x\right)=\left(x-10\right)\left(x^5+x^3+x\right)+10\)
\(f\left(x\right)=x\left(x-10\right)\left(x^4+x^2+1\right)+10\)
\(\Rightarrow f\left(9\right)=9.\left(9-10\right)\left(9^4+9^2+1\right)+10\)
\(\Leftrightarrow f\left(9\right)=9.\left(-1\right).\left(6643\right)+10\)
\(\Leftrightarrow f\left(9\right)=-59777\)
P/s : làm cho zui thôi nha , sai đừng đáp đá
\(x=9\)\(\Rightarrow x+1=10\)
\(\Rightarrow f\left(9\right)=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(=x^6-x^6-x^5+x^5+.......-x+x+1=1\)
Phân tích đa thức thành nhân tử rồi tính giá trị biểu thức
A=3x^2-2(x-y)^2-3y^2 tại x=4,y=-4
B=4(x-2)(x+1)+(2x-4)^2+(x+1)^2 tại x=-1/2
C=x^2(y-z)+y^2(z-x)+z^2(x+y) tại x=6,y=5,z=4
D=x^2017-10x^2016+10x^2015-...-10x^2+10x-10 với x=9
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)
=(2x-4+x+1)^2
=(3x-3)^2
Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4
c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)
=x^2-2y^2+10z^2
=6^2-2*5^2+10*4^2
=146
d: x=9 thì x+1=10
\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1
=-1
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
a) Chứng minh: -x2 + 3x - 4 < 0 với mọi x
b) Tính A= x16 -10x15+10x14-10x13+...+10x2-10x +10 với x = 9
\(do:x=9\Rightarrow x+1=10\Rightarrow A=x^{16}-\left(x+1\right)x^{15}+\left(x+1\right)x^{14}-....+\left(x+1\right)=x^{16}-x^{16}-x^{15}+x^{15}+x^{14}-x^{14}-x^{13}+x^{13}+.....-x+x+1=1\)
\(-x^2+3x-4=-x^2+3x-2,25-1,75=-\left(x-\frac{3}{2}\right)^2-1,75< 0\left(đpcm\right)\)