\(G=x^4+10x^3+10x^2+10x+10\)
\(=x^4+10\left(x^3+x^2+x+1\right)\)
\(=\left(-9^4\right)+10\left[\left(-9\right)^3+\left(-9\right)^2+-9+1\right]\)
\(=6561+10\cdot-656\)
\(=6561-6560\)
\(=1\)
Thay `x=-9` vào biểu thức G:
`G=(-9)^4+10.(-9)^3+10.(-9)^2+10.(-9)+10`
`=6561-7290+810-90+10`
`=1`
Do \(x=-9\Rightarrow x+9=0\)
Ta có:
\(G=\left(x^4+9x^3\right)+\left(x^3+9x^2\right)+\left(x^2+9x\right)+\left(x+9\right)+1\)
\(=x^3\left(x+9\right)+x^2\left(x+9\right)+x\left(x+9\right)+\left(x+9\right)+1\)
\(=x^3.0+x^2.0+x.0+0+1=1\)