Rút gọn biểu thức 6 x 2 y ( x + 2 ) 8 x 3 y 2 x 2 + 3 x + 2
A. - 3 4 x y ( x + 1 )
B. 3 4 x y ( x + 1 )
C. x 4 x y ( x + 1 )
D. 6 4 x y ( x + 1 )
Rút gọn biểu thức:
(x+y-7)^2 -2(x+y-7)(y-6)+(y-6)^2
\(\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=x^2-2x+1\)
Rút gọn biểu thức y^2+x-6 trên x^2-9
\(\dfrac{x^2+x-6}{x^2-9}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-2}{x-3}\)
Rút gọn các biểu thức đại số sau:
a) \(6(y - x) - 2(x - y)\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
a) Cách 1:
\(6(y - x) - 2(x - y)\)
\( = 6y - 6x - 2x + 2y\)
\( = 8y - 8x\)
Cách 2:
\(6(y - x) - 2(x - y)\\= 6(y-x)+2(y-x)\\=(6+2).(y-x)\\=8.(y-x)\\=8y-8x\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
\( = (3{x^2} - 5{x^2}) + (x - 4x)\)
\( = - 2{x^2} - 3x\)
với x>y≥0, biểu thức:\(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)2}\)rút gọn bt ta đc...
\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)
\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)
\(=-x^3\)
Kết quả sau khi rút gọn biểu thức A = (x – y – 1)3 – (x – y + 1)3 + 6(x – y)2 là: …
Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)
\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)
\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)
=-2
Với x > y ≥ 0 , biểu thức: \(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)^2}\)có kết quả rút gọn là
\(=\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)=-x^3\)
Rút gọn biểu thức sau :
12 + 3.y + 4.x + x.y - 12 + 2.y + 6.x - x - 5.y
\(12+3y+4x+xy-12+2y+6x-x-5y\)
\(=9x+xy\)
\(=x\left(y+9\right)\)
12+3y+4x+xy-12+2y+6x-x-5y=
=9x+xy
=x(9+y)
12 + 3y + 4x + xy -12 + 2y + 6x- x - 5y
=9x +xy
=x(y+9)
cho biểu thức : \(A=\dfrac{x^2+2x-y^2-2y}{x^2-y^2}\)
a) Rút gọn A
b)Tính giá trị của A khi x=5 và y=6
a)
\(A=\dfrac{x^2+2x-y^2-2y}{x^2-y^2}\\ =\dfrac{\left(x^2-y^2\right)+\left(2x-2y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{x+y+2}{x+y}\)
b)
thay x=5,y=6 vào biểu thức A ta có
\(\dfrac{5+6+2}{5+6}=\dfrac{13}{11}\)
vậy A=13/11 kkhi x=5,y=6
a: \(A=\dfrac{\left(x+y\right)\left(x-y\right)+2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{x+y+2}{x+y}\)
b: Khi x=5 và y=6 thì \(A=\dfrac{5+6+2}{5+6}=\dfrac{13}{11}\)
Rút gọn rồi tính giá trị của biểu thức:
x^2+2xy+y^2-2x-2y tại x+y=-6
\(x^2+2xy+y^2-2x-2y=\left(x+y\right)^2-2\left(x+y\right)=\left(-6\right)^2-2.\left(-6\right)=\)
RÚT GỌN RỒI TÍNH GIÁ TRỊ BIỂU THỨC :
x^2-2xy-4z^2+y^2 tại x=6, y=-4 , z=45
Ta có: \(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)
x2 - 2xy + y2 - 4z2
= (x - y)2 - (2z)2
= (x - y - 2z) (x - y + 2z)
Thay x = 6 ; y = -4 và z = 45 vào biểu thức ta được:
[6 - (-4) - 2 . 45] [6 - (-4) + 2 . 45]
= -80 . 100
= -8000
Trả lời:
x2 - 2xy - 4z2 + y2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z ) ( x - y + 2z )
Thay x = 6; y = - 4; z = 45 vào biểu thức trên, ta được:
[ ( 6 - ( - 4 ) - 2.45 ] [ 6 - ( - 4 ) + 2.45 ] = ( 6 + 4 - 90 ) ( 6 + 4 + 90 ) = ( 10 - 90 ) ( 10 + 90 ) = - 80 . 100 = - 8000