Biết tứ giác MNOP nội tiếp trong một đường tròn và góc P M N ^ = 120 0 , hỏi khẳng định nào sau đây đúng?
a, O ^ = 60 0
b, N ^ = 60 0
c, P ^ = 60 0
d, P ^ = 90 0
Qua điểm M nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến MN, MP (N,P là các tiếp điểm) và cát tuyến MAB (MA < MB ) nằm trong NMO.
a) Chứng minh: MO vuông góc NP tại H và tứ giác MNOP nội tiếp.
b) Chứng minh: HN là phân giác AHB.
c) Từ A vẽ đường thẳng song song với NB cắt MN tại C; NH tại D. Chứng minh A là trung điểm của CD.
a: góc MNO+góc MPO=180 độ
=>MNOP nội tiếp
Xét (O) có
MN,MP là tiếp tuyến
=>MN=MP
mà ON=OP
nên OM là trung trực của NP
=>OM vuông góc HP
b: ΔOMN vuông tại N có NH vuông góc OM
=>MH*MO=MN^2
Xét ΔMAN và ΔMNB có
góc MNA=góc MBN
góc M chung
=>ΔMAN đồng dạng với ΔMNB
=>MN^2=MA*MB=MH*MO
=>MA/MH=MO/MB
=>ΔMAH đồng dạng với ΔMOB
=>góc MHA=góc MBO
=>góc MHA=góc BHO
=>góc AHN=góc BHN
=>HN là phân giác của góc AHB
Qua M nằm ngoài đường tròn (O) vẽ tiếp tuyến MN,MP và cát tuyến M,A,B (MA<MB) nằm trong góc MNO
a) chứng minh MO vuông góc NB tại H và tứ giác MNOP nội tiếp
b) chứng minh HN là phân giác góc AHB
c) Từ A vẽ đường thẳng song song NB cắt MN tại C, NH tại D. Chứng minh A là trung điểm CD
giải câu b,c thui nha (giải dễ hiểu nha :)
Câu 5. (3,5 điểm) Cho đường tròn tâm O bán kính R và đường thẳng (d) không đi qua O cắt đường tròn (O; R), qua M kẻ hai tiếp tuyến MN và MP tới đường tròn (O; R) (N, P là hai tiếp điểm)
a)Chứng minh rằng tứ giác MNOP nội tiếp được trong một đường tròn, xác định tâm đường tròn đó.
b) Chứng minh rằng MA.MB = MN2
c) Khi điểm M chuyển động trên (d) và nằm ngoài đường tròn (O; R) thì tâm đường tròn ngoại tiếp tam giác MNP di chuyển trên đường nào.
Cho đường tròn (O; R) cố định và đường thẳng d không đi qua O cắt (O; R) tại A và B. Từ điểm M bất kì trên d và ở ngoài đường tròn vẽ hai tiếp tuyến MN; MP (N và P là hai tiếp điểm).
1, Chứng minh tứ giác MNOP nội tiếp đường tròn. Gọi O’ là tâm của đường tròn này, xác định vị trí của điểm O’
2, Đường tròn (O’) ngoại tiếp tứ giác MNOP cắt d tại I. Chứng minh IA = IB
3, Từ N kẻ đường kính ND của (O) và đường kính NC của (O’). Chứng minh tích DP.DC không đổi
4, Xác định vị trí của M trên d sao cho MNOP là hình vuông
cho đường tròn (O;R) và đường thẳng d cắt đường tròn tại 2 điểm A, B. từ 1 điểm M trên đường thẳng d và ngoài (O), d không qua tâm O vẽ 2 tiếp tuyến MN, MP với đường tròn (O) (N,P là 2 tiếp điểm)
c, xác định vị trí của M lưu động trên đường thẳng d sao cho tứ giác MNOP là hình vuông
d, chứng minh rằng tâm I của dường tròn nội tiếp tam giác MNP lưu dộngd trên 1 đường cố định khi M lưu đọng trên đường thẳng d
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
cho tam giác nhọn ABC nội tiếp đường tròn (O). Hai đường phân giác trong của góc A và góc B cắt nhau ở I và thứ tự cắt đường tròn ở D và E. Đường thẳng DE cắt BC và AC lần lượt ở M và N. Chứng minh:
a) tứ giác AENI và BIMD nội tiếp
b) tứ giác CMIN là hình thoi
cho tam giác nhọn ABC nội tiếp đường tròn (O). Hai đường phân giác trong của góc A và góc B cắt nhau ở I và thứ tự cắt đường tròn ở D và E. Đường thẳng DE cắt BC và AC lần lượt ở M và N. Chứng minh:
a) tứ giác AENI và BIMD nội tiếp
b) tứ giác CMIN là hình thoi
Giúp e vs ạ
a: góc ANE=1/2(sđ cung AE+sđ cung CD)
=1/2(sđ cung AE+sđ cung BD)
góc AIE=1/2(sđ cung AE+sđ cung BD)
=>góc ANE=góc AIE
=>AINE nội tiếp
góc BMD=1/2(sđ cung BD+sđ cung CE)
góc BID=1/2(sđ cung BD+sđ cung AE)
mà sđ cung CE=sđ cung AE
nên góc BMD=góc BID
=>BIMD nội tiếp