Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn (O). Các đường phân giác của hai góc B và C cắt nhau ở E và cắt đường tròn lần lượt tại F và D. Chứng minh rằng tứ giác EDAF là một hình thoi
cho tam giác ABC nội tiếp đường tròn tâm O .gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của hai góc B và C.đường thằng ED cắt BC tại I,cắt cung nhỏ BC ở M .chứng minh:
a)tứ giác BECD nội tiếp đc trong đường tròn
b)BI.IC=ID.IE
c)ba điểm A,E,D thẳng hàng
giúp mk vs ạ:cho tam giác ABC cân nội tiếp đường tròn O. các đường phân giác góc B và góc C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là hình thoi
Cho tam giác ABC nhọn nội tiếp đường tròn (O).
Các đường cao BD, CE của tam giác ABC cắt nhau tại H
và cắt đường tròn (O) lần lượt tại M và N. Chứng minh:
a. Các tứ giác ADHE, BEDC nội tiếp
b. DE/MN
c. OA.LDE
Cho tam giác ABC nội tiếp đường tròn (O), các tia phân giác của các góc ABC và ACB cắt nhau tại I và cắt đường tròn lần lượt tại các điểm D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:
a) các tam giác AMN, EAI, DAI là những tam giác cân
b) tứ giác AMIN là hình thoi
Cho tam giác ABC nội tiếp đường tròn (O), các tia phân giác của các góc ABC và ACB cắt nhau tại I và cắt đường tròn lần lượt tại các điểm D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:
a) các tam giác AMN, EAI, DAI là những tam giác cân
b) tứ giác AMIN là hình thoi
Cho tam giác ABC nội tiếp đường tròn (O) . Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E . Dây DE cắt các cạnh AB và AC lần lượt tại M và N . Chứng minh rằng
a) Tam giác AMN là tam giác cân
b) Các tam giác EAI và DAI là những tam giác cân
c) Tứ giác AMIN là hình thoi
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của các góc B và C cắt nhau tại I và cắt (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh:
a, Các tam giác AMN, EAI và DAI là những tam giác cân
b, Tứ giác AMIN là hình thoi
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng