Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thành
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Nguyễn Ngọc Bảo Trâm
4 tháng 10 2016 lúc 20:22

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

Phan Bảo Ngọc
4 tháng 10 2016 lúc 20:16

hại não o_o

Kim Jisoo
16 tháng 12 2019 lúc 22:42

Mặc dù chưa tìm đc cách giải nhưng mk thấy vui vì bn là người đam mê học toán, học toán hết mk và trung thực. Bn sẽ thành công. Chúc bn học giỏi.

Khách vãng lai đã xóa
Trần Văn Thành
Xem chi tiết
KUDO SHINICHI
4 tháng 10 2016 lúc 16:26

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm

Dương Hoàng Minh
Xem chi tiết
Phạm Nhật An
23 tháng 6 2016 lúc 17:53

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

Phạm Nhật An
23 tháng 6 2016 lúc 17:56

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

Nguyễn Cao Bảo Ngân
23 tháng 6 2016 lúc 19:46

Nhìu thế!!!!batngo

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2018 lúc 15:44

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2017 lúc 14:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2018 lúc 9:50

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2017 lúc 6:57

Đáp án C

Xét mặt phẳng (SAB) và (SCD) có:

S là điểm chung

AB // CD

⇒ Giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và song song với AB

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:22

loading...

\(A{\rm{D}}M{\rm{S}}\) là hình thang có hai đáy là \(A{\rm{D}}\) và \(M{\rm{S}}\) nên \(A{\rm{D}}\parallel M{\rm{S}}\).

Theo đề bài ta lại có \(d\parallel A{\rm{D}}\).

Do đó \(d \equiv MS\) (theo định lí 1).

Lại có: \(SM \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {A{\rm{D}}M{\rm{S}}} \right) \Rightarrow d \subset \left( {SA{\rm{D}}} \right)\).