Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = BC = CD = a, AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và CD. Tính cosin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4
A . 5 10
B . 3 310 20
C . 310 20
D . 3 5 10
Cho hình chóp S.ABCD đáy ABCD là hình thang cân, A D = a , A B = a , B C = a , C D = 2 a . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và SD. Tính cosin góc giữa MN và (SAC) biết thể tích khối chóp S.ABCD bằng a 3 3 4
A. 310 20
B. 3 5 10
C. 3 310 20
D. 5 10
Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD=a, BC=b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q. Giả sử AM cắt BP tại E; CQ cắt DN tại F. Tính EF theo a,b
A. E F = 1 2 ( a + b )
B. E F = 3 5 ( a + b )
C. E F = 2 3 ( a + b )
D. E F = 2 5 ( a + b )
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB//CD. Gọi M, N lần lượt là trung điểm của AD và BC; gọi G là trọng tâm tam giác SAB. Thiết diện của hình chóp với mặt phẳng (MNG) là hình bình hành thì
A. AB = 3CD
B. AB = 2CD
C. CD = 3AB
D. CD = 2AB
Cho hình chóp S.ABCD có ABCD là hình thang cân đáy lớn AD. Gọi M, N lần lượt là hai trung điểm của AB, CD. Gọi (P) là mặt phẳng đi qua MN và cắt mặt bên (SBC) theo một giao tuyến. Thiết diện của (P) và hình chóp là:
A. Hình bình hành.
B. Hình chữ nhật.
C. hình thang.
D. Hình vuông.
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AD=2AB=2CD=2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4 .
A. 5 10
B. 3 10 20
C. 10 20
D. 3 5 10
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của SC và AD. Góc giữa đường thẳng MN và mặt đáy (ABCD) bằng:
A. 90 °
B. 30 °
C. 45 °
D. 60 °
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = 2 , A D = 2 3 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng . Gọi M, N, P lần lượt là trung điểm của các cạnh SA, CD,CB. Tính côsin góc tạo bởi hai mặt phẳng M N P và S C D .
A. 2 435 145
B. 11 145 145
C. 2 870 145
D. 3 145 145
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, A B C = 60 ° , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, M, N lần lượt là trung điểm của các cạnh AB, SA, SD và P là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm của đoạn thẳng SP đến mặt phẳng (HMN) bằng
A. a 15 30 .
B. a 15 20 .
C. a 15 15 .
D. a 15 10 .