Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 12 2018 lúc 10:18

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2017 lúc 10:02

Đáp án : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2018 lúc 2:08

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2019 lúc 15:07

Đáp án A

y ' = ln x 2 x + 1 + x + 1 x = x ln x + 2 x + 1 2 x x + 1

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2019 lúc 2:35

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2017 lúc 4:15

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2018 lúc 2:59

Đáp án B

Ta có  y ' = 1 x + 2 x .