Hàm số y = x n + x n - 1 + . . . + x = 1 ( n ∈ ℕ , n ⩾ 1 ) có đạo hàm tại x=1 bằng
A . n ( n + 1 ) 2
B . n ( n - 1 ) 2
C . n ( n - 1 )
D . n ( n + 1 )
Giả sử hàm f có đạo hàm cấp n trên R, n ∈ N * và f ( 1 - x ) + x 2 f ' ' ( x ) = 2 x với mọi x ∈ ℝ . Tính tích phân I = ∫ 0 1 x f ' ( x ) d x
A. I=1
B. I=-1
C. I= 1 3
D. I= - 1 3
Giả sử hàm f có đạo hàm cấp n trên R, n ∈ ℕ * và f 1 - x + x 2 f ' ' x = 2 x với mọi x ∈ ℝ . Tính tích phân ∫ 0 1 x f ' x d x
A. I = 1
B. I = - 1
C. I = 1 3
D. I = - 1 3
Cho hàm số y = mx + 1 x + n . Biết đồ thị hàm số có tiệm cận đứng là x = -1 và y'(0) = 2. Giá trị của m + n là
A. 2
B. 4
C. 1
D. 3
Cho hàm số y = - x + 2 x - 1 có đồ thị (C) và điểm A a ; 1 . Biết a = m n (với mọi m , n ∈ N và m n tối giản) là giá trị để có đúng một tiếp tuyến của (C) đi qua A. Khi đó giá trị m + n là:
A. 2
B. 7.
C. 5
D. 3.
Cho đồ thị y=f’(x) trên [m;n] (như hình vẽ). Biết f(a)> f(c)>0; f(d)<f(b)<0 và
m
a
x
f
(
x
)
[
m
;
n
]
=
f
(
n
)
;
m
i
n
f
(
x
)
[
m
;
n
]
=
f
(
m
)
Số điểm cực trị của hàm số
y
=
f
(
x
)
trên [m;n] là
A. 6
B. 8
C. 9
D. 10
Cho hàm số f(x) có f ( 1 ) = 1, f ( m + n ) = f ( m ) + f ( n ) + m n , ∀ m , n ∈ ℕ * . Giá trị của biểu thức T = log f ( 96 ) − f ( 69 ) − 241 2 là
A.4
B.3
C.6
D.9
Cho hàm số f ( x ) = ( x - 1 ) 2 ( m x 2 + 4 m x - m + n - 2 ) với m , n ∈ R . Biết trên khoảng - 7 6 ; 0 hàm số đạt cực đại tại x = -1 Trên đoạn - 7 2 ; 5 4 hàm số đã cho đạt cực tiểu tại.
A. x = - 7 2
B. x = - 3 2
C. x = - 5 2
D. x = - 5 4
Cho hàm số f ( x ) = x + x 2 2 + x 3 3 + . . . + x n + 1 n + 1 , n ∈ N . Tính lim x → ∞ f ' ( 1 3 ) .
A. L = 2 3
B. L = 3 2
C. L = 5 4
D. L = 7 4