Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho hàm số y = - x 3 + 3 x 2 - 2 có đồ thị (C) và điểm A (m;2). Tìm tập hợp S là tất cả các giá trị thực của m để có 3 tiếp tuyến của (C) đi qua A
A. S = - ∞ ; - 1 ∪ 4 3 ; 2 ∪ 2 ; + ∞
B. S = - ∞ ; - 2 ∪ 5 2 ; 2 ∪ 2 ; + ∞
C. S = - ∞ ; - 1 ∪ 5 3 ; 2 ∪ 2 ; + ∞
D. S = - ∞ ; - 1 ∪ 5 3 ; 3 ∪ 3 ; + ∞
Gọi S là tập hợp tất cả các giá trị thực của a sao cho đường thẳng y=a(x-1)-3 cắt đồ thị (C) của hàm số y = 2 x 3 - 3 x 2 - 2 tại ba điểm M,N,P(1;-3) và tiếp tuyến của (C) tại M,N vuông góc với nhau. Tổng các phần tử của S bằng
A. -1.
B. 1.
C. 2.
D. -2
Cho hàm số y = − x + 1 2 x − 1 có đồ thị là (C), đường thẳng d : y = x + m . Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 đạt giá trị lớn nhất.
A. m = -1
B. m = -2
C. m = 3
D. m = -5
Cho hàm số y = x 3 - 3 x 2 + m x - m + 1 có đồ thị (C) và điểm A(0;2) Gọi S là tập họp tất cả các giá trị nguyên của m để có ít nhất 2 tiếp tuyến của đồ thị (C) đi qua A . Tìm số phần tử của S.
A. 2
B. 3
C. 0.
D. 1.
Cho hàm số y = - x + 2 x - 1 có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả các phần tử của S bằng:
A. 1
B. 3 2
C. 5 2
D. 1 2
Cho hàm số y = − x + 2 x − 1 có đồ thị (C) và điểm A(a;1) Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả các phần tử của S bằng:
A. 1
B. 3/2
C. 5/2
D. 1/2
Cho hàm số y = - x + 2 x - 1 có đồ thị (C) và điểm A ( a;1 ). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả các phần tử của S bằng
A. 1
B. 3 2
C. 5 2
D. 1 2
Cho hàm số y = − x + 2 x − 1 có đồ thị (C) và đi qua điểm A a ; 1 . Gọi S là tập tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) qua A. Tổng giá trị tất cả các phần tử của S bằng
A. 5 2 .
B. 3 2 .
C. 1.
D. 1 2 .