Cho tam giác ABC vuông tại A biết AB = 21 cm, C ^ = 40 0 . Tính độ dài đường phân giác BD của A B C ^ , với D nằm trên cạnh AC
Cho tam giác ABC vuông tại A biết AC = 21 cm và AB = 18 cm. Tìm khẳng định sai ?
A. C ^ = 41 °
B. B ^ = 49 °
C. B ^ = 50 °
D. B C = 3 85
Cho tam giác abc vuông tại A, đường cao AH, biết AB=21 cm, AC=28cm
a) Tính Ah
b) KẺ HD vuông góc AB, HE vuông góc AC. Tính diện tích tam giác AED
a:
BC=35cm
\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)
b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)
\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)
Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)
Cho tam giác ABC vuông tại A ( AB<AC). Phân giác của góc ABC cắt AC tại D, vẽ DM vuông góc với BC tại M
a) cm tam giác ABD = tam giác MBD
b) Trên tia đối của tia MD lấy điểm N sao cho MD = MN . CM tam giác DCN cân
c) Trung tuyến DK của tam giác DCN cắt BC tại E .Cho biết DK = 21 cm . Tính DE
d) Đường cao AH của tam giác ABC cắt BD tại I . CM MI // AC
Cho tam giác ABC vuông tại A ( AB<AC). Phân giác của góc ABC cắt AC tại D, vẽ DM vuông góc với BC tại M
a) cm tam giác ABD = tam giác MBD
b) Trên tia đối của tia MD lấy điểm N sao cho MD = MN . CM tam giác DCN cân
c) Trung tuyến DK của tam giác DCN cắt BC tại E .Cho biết DK = 21 cm . Tính DE
d) Đường cao AH của tam giác ABC cắt BD tại I . CM MI // AC
Cho tam giác ABC vuông tại A có AB = 21 cm, C 40 độ , BD là đường phân giác ( D thuộc AC). Độ dài đoạn thẳng BD là (kết quả làm tròn đến chữ số thập phân thứ nhất)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABC}=50^0\)
\(\Leftrightarrow\widehat{ABD}=25^0\)
Xét ΔABD vuông tại A có
\(AB=BD\cdot\cos\widehat{ABD}\)
\(\Leftrightarrow BD=\dfrac{21}{\cos25^0}\simeq23.2\left(cm\right)\)
Cho tam giác ABC vuông tại A đường cao AH đường phân giác AD vẽ HN vuông góc với AC cho biết AB = 21 cm,AC=28 cm.Tính AH BD DC
a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH
=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)
BC = BH + CH = 25 + 10,24 = 35,24
- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :
AB2 = BH.BC
=> AB\(\sqrt{\left(BH.BC\right)}\)
= \(\sqrt{\left(25.35,24\right)}\)
= \(\sqrt{881=29,68}\)
AC2 = HC.BC
=> AC = \(\sqrt{\left(CH.BC\right)}\)
= \(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)
Cho Tam Giác ABC vuông tại A biết AB = 21 cm, AC = 28 cm, phân Giác AD ( D thuộc BC)
a) Tính độ Dài DB DC
b) Gọi E là hình chiếu của D trên AC. Hãy Tính Độ dài DE EC
c) C/m tam giác ABC đồng dạng với tam giác EDC. Tính tỉ số đồng dạng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)
Vậy: BD=15cm; CD=20cm
Bài 3: Cho tam giác ABC có đường cao BH. Biết AB = 40 cm, AC = 58 cm, BC = 42 cm
a) ABC có là tam giác vuông không? vì sao?
b) Tính các tỉ số lượng giác của góc A
c) Kẻ HE vuông AB tại E, HF vuông BC tại F. Tính BH, BE, BF và diện tích EFCA
Bài 3:
Giải tam giác MNP vuông tại M có góc N = 37 độ, NP 25 cm (độ dài làm tròn đến chữ số thập phân thứ nhất, góc làm tròn đến độ
Mong bạn Phong giúp mình:((
Lưu ý: Giải chi tiết từng bước
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?
Đăng như vậy có ngày không ai giúp bạn đâu.
Cho tam giác ABC vuông tại B. Giải tam giác ABC, biết rằng:
a) \(\widehat{A}\) = \(40^0\), AC = 8cm
b) cotC = \(\dfrac{1}{\sqrt{3}}\); AB = 5cm
a, \(sin\left(A\right)=\dfrac{BC}{AC}\Leftrightarrow sin\left(40^o\right)=\dfrac{BC}{8}\Leftrightarrow BC\approx5,14\left(cm\right)\)
\(cos\left(A\right)=\dfrac{AB}{AC}\Leftrightarrow cos\left(40^o\right)=\dfrac{AB}{8}\Leftrightarrow AB\approx6,12\left(cm\right)\)
b,
\(cotg\left(C\right)=\dfrac{BC}{AB}\Leftrightarrow\dfrac{1}{\sqrt{3}}=\dfrac{BC}{5}\Leftrightarrow BC=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
\(AC^2=AB^2+BC^2\Leftrightarrow AC=\sqrt{AB^2+BC^2}=\sqrt{5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)