Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
illumina
Xem chi tiết
Phùng Công Anh
15 tháng 6 2023 lúc 8:42

`1/P=(sqrtx+1)/(sqrtx-3)=(sqrtx-3+4)/(sqrtx-3)=1+4/(sqrtx-3)(x>=0,x\ne9)`

Để `1/P` max thì `4/(sqrtx-3)` max

Nhận thấy nếu `x<9` thì `sqrtx-3<0` hay `4/(sqrtx-3)<0`

Nếu `x>9` thì `4/(sqrtx-3)>0`

Do đó ta xét `x>9` hay `x>=10`

`=>sqrtx-3>=sqrt10-3`

`=>4/(sqrtx-3)<=4/(sqrt10-3)`

Hay `(1/P)_(max)=1+4/(sqrt10-3)<=>x=10`

Nguyễn Thị Liên
Xem chi tiết
Tran Le Khanh Linh
2 tháng 5 2020 lúc 6:18

2) \(A=\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\)

\(=2\left(x^2-xy+y^2\right)+2xy\)

\(=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)(BĐT Bunhiacopxki)

=> A \(\ge4\)Dấu "=" xảy ra <=> x=y=1

Khách vãng lai đã xóa
hoangtuvi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 22:24

a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)

\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)

\(=-16x+8\)

b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

=27x-55

Chanhh
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 15:47

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:36

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 22:26

a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)

\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)

|x+3|=5

=>x=2(loại) hoặc x=-8(nhận)

Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)

b: A nguyên

=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}

=>x^2+x+2=2 hoặc x^2+x+2=4

=>x^2+x-2=0 hoặc x(x+1)=0

=>\(x\in\left\{1;0;-1\right\}\)

illumina
Xem chi tiết
Tô Mì
26 tháng 6 2023 lúc 10:40

Ta có : \(P=3A+2B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)

Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)

\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)

\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)

Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:47

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-6< 0\)

\(\Leftrightarrow x< 36\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)

Anh Khoa
Xem chi tiết
Đen đủi mất cái nik
12 tháng 9 2017 lúc 19:41

Ta cóL

A=x(x+2y-5)+y(y-5x+5)+xy

=x2+2xy-5x+y2-5xy+5y+xy

=x2-2xy+y2-5x+5y

=(x-y)2-5(x-y)

=(x-y)(x-y-5)

=3.(3-5)

=-6

Lựu Ngô
Xem chi tiết
Nguyễn Thái Thịnh
5 tháng 2 2022 lúc 20:18

Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).

Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:

\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)

Game Good
Xem chi tiết
PN Linh
10 tháng 1 2021 lúc 12:39

A=(x+y)3 - 3xy(x+y)+3x2y2

=8-6xy+3x2y2

=3(x2y2-2xy+1)+5

=3(xy+1)2+5 ≥5

dấu = xảy ra ⇔ xy=1 ⇒ x=y=1