Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kim mai
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2021 lúc 20:29

Với \(cosx=0\) ko phải nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)

\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

New_New
Xem chi tiết
alibaba nguyễn
17 tháng 5 2017 lúc 19:04

Học cái viết đề đi b. Đọc không có ra

New_New
22 tháng 5 2017 lúc 19:49

đề nè

\(\left(1+cosx\right)\cdot\left(1+4^{cosx}\right)=3\cdot4^{cosx}\)

Trương Văn Châu
Xem chi tiết
Mai Linh
29 tháng 3 2016 lúc 13:05

Xét hàm số \(f\left(t\right)=t^{\cos\alpha}-t\cos\alpha\)

Ta có : \(f'\left(x\right)=\left(t^{\cos\alpha}-1\right)\cos\alpha\)

Khi đó \(f\left(3\right)=f\left(2\right)\) và \(f\left(1\right)\) khả vi liên tục trên \(\left[2;3\right]\) Theo định lí Lagrange thì tồn tại \(c\in\left[2;3\right]\) sao cho :

\(f'\left(c\right)=\frac{f\left(3\right)-f\left(2\right)}{3-2}\) hay \(\left(c^{\cos\alpha-1}-1\right)\cos\alpha\)

Từ đó suy ra :

\(\begin{cases}\cos\alpha=0\\\cos\alpha=1\end{cases}\)\(\Leftrightarrow\begin{cases}\alpha=\frac{\pi}{2}+k\pi\\\alpha=k\pi\end{cases}\) \(\left(k\in Z\right)\)

Thử lại ta thấy các giá trị này đều thỏa mãn

Vậy nghiệm của phương trình là \(x=\frac{\pi}{2}+k\pi;x=k\pi\) và \(\left(k\in Z\right)\)

Cao Chi Hieu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:47

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


Đỗ Đức Huy
Xem chi tiết
Nguyễn Trọng Nghĩa
7 tháng 5 2016 lúc 15:30

\(\Leftrightarrow2^{\cos2x-1}\left(2\cos x-1\right)=2\cos^2x\left(2\cos x-1\right)\)

\(\Leftrightarrow\left(2\cos x-1\right)\left(2^{\cos2x}-2\cos^2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\cos x=\frac{1}{2}\\2^{\cos2x}=\cos2x+1\end{array}\right.\)

* Với \(\cos x=\frac{1}{2}\) ta có \(x=\frac{\pi}{3}=k2\pi,k\in Z\)

* Với \(2^{\cos2x}=\cos2x+1\) (*), đặt \(t=\cos2x;t\in\left[-1;1\right]\)

Phương trình trở thành \(2^t-t-1=0\)

Xét hàm số \(f\left(t\right)=2^t-t-1,t\in\left[-1;1\right]\)

Có \(f'\left(t\right)=2^t\ln2-1,t\in\left[-1;1\right];f'\left(t\right)=0\) có đúng 1 nghiệm  nên phương trình \(f\left(t\right)=0\) có tối đa 2 nghiệm. Mà \(f\left(0\right)=f\left(1\right)=0\) nên \(t=0;t=1\) là tất cả các nghiệm của phương trình \(f\left(t\right)=0\)

Do đó phương trình (*) \(\Leftrightarrow\left[\begin{array}{nghiempt}\cos2x=0\\\cos2x=1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{4}+k\frac{\pi}{2}\\x=k\pi\end{array}\right.\) \(k\in Z\)

Vậy phương trình đã cho có 3 nghiệm là :

\(x=\frac{\pi}{3}+k2\pi;x=\frac{\pi}{4}+k\frac{\pi}{2};x=k\pi;k\in Z\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 16:48

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Sonyeondan Bangtan
Xem chi tiết
Bóng Đêm Hoàng
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 0:05

Bạn xem lại đề bài