Biểu thức J = x 2 – 8 x + y 2 + 2 y + 5 có giá trị nhỏ nhất là
A. -12
B. 5
C. 12
D. -5
Bài 3: Chứng minh rằng biểu thức sau ko phụ thuộc vào biểu thức
A=(x-5)(2x+3)-2x(x-3)+x+7
B=4(y-6)-y22(2+3y)+y(5y-4)+3y2
Bài 4:
a)4a2-16b2
b) 4x2-4x+1
c.1) (2x+y)2-x2
c,2) y2+_x-y2
d) (x-y)2-(2x-y)2
e) 8x3-y3
i)3x+6y+(x+2y)
j) ax-ay-x+y
k) 2x2-y+6x2y-3y2
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Tớ xin làm câu k nhé!
\(k)2x^2-y+6x^2y-3y^2\\=(2x^2-y)+(6x^2y-3y^2)\\=(2x^2-y)+3y(2x^2-y)\\=(2x^2-y)(1+3y)\)
#\(Toru\)
\(c)\\1)(2x+y)^2-x^2\\=(2x+y-x)(2x+y+x)\\=(x+y)(3x+y)\\2)?\)
Dấu _ là sao cậu?
#\(Toru\)
Cho biểu thức:
\(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\left(x\ne\pm y\right)\)
1. Rút gọn biểu thức \(C\) ;
2. Khi cho \(\left(x^2-y^2\right)\cdot C=-8\), hãy tính giá trị của biểu thức:
\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\).
1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)
\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)
2: \(\left(x^2-y^2\right)\cdot C=-8\)
=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)
=>\(\left(x-y\right)^3=-8\)
=>x-y=-2
=>x=y-2
\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)
\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)
\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)
\(=\left(y-1\right)\left(-4y+4\right)+4xy\)
\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)
\(=-4y^2+8y-4+4y^2-8y\)
=-4
Cho các số x, y thoả mãn đẳng thức \(x^4+x^2y^2+y^4=4\); \(x^8+x^4y^4+y^8=8\)
Hãy tính giá trị biểu thức: \(A=x^{12}+x^2y^2+y^{12}\)
Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2) (x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2 kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Cho x-y=1. Tính giá trị biểu thức
P=(x+y)(x^2+y^2)(x^4+y^4)-x^8+y^8+1
Gợi ý: theo hằng đẳng thức 3
\(P=\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\) (Vì: \(x-y=1\))
\(\Leftrightarrow P=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x^4-y^4\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=x^8-y^8-x^8+y^8+1\)
\(\Leftrightarrow P=1\)
bài bạn làm hơi sai
cho các số x,y thỏa mãn x^4 +x^2*y^2+y^4=0; x^8 +y^8+x^4*y^4=8 .Biểu thức A=x^12+x^2*y^2+y^12 có giá trị là
Đặt x^2+y^2=a; x^2*y^2=b
nên hệ pt
a^2-b=0(a^2-2b)^2-b^2=8Giải ra tìm a,b rồi thay vô tìm x,y
Tìm giá trị nhỏ nhất của biểu thức
J=x2+y2-6x-2y+17
G=(x-2)2+(x-4)2
Ta có: J = x2 + y2 - 6x - 2y + 17 = (x2 - 6x + 9)+ (y2 - 2y + 1) + 7 = (x - 3)2 + (y - 1)2 + 7
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x
(y - 1)2 \(\ge\) 0 \(\forall\)y
=> (x - 3)2 + (y - 1)2 + 7 \(\ge\)7 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy Min của J = 7 tại x = 3 và y = 1
(HD) Ta có: G = (x - 2)2 + (x - 4)2 = x2 - 4x + 4 + x2 - 8x + 16 = 2x2 - 12x + 20 = 2(x2 - 6x + 9) + 2 = 2(x - 3)2 + 2
Phần còn lại lm như trên
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
cho các số x,y thỏa mãn các đẳng thức: x^4 +x^2y^2 + y ^4 = 4, x^8 + x^4y^4 + y^8 = 8
tính giá trị biểu thức A= x^12 + x^2y^2 + y^12