Giá trị của giới hạn lim n → ∞ 9 + 99 + . . . . + 99 . . . 9 10 n bằng
A. 0
B. 1
C. 10 9
D. 10 81
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
Tìm giới hạn của giá trị:
\(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}\right)\)
\(\lim\limits\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}\right)\)
\(=\lim\limits\dfrac{n^2+2n-n^2+2n}{\sqrt{n^2+2n}+\sqrt{n^2-2n}}\)
\(=\lim\limits\dfrac{4n}{\sqrt{n^2+2n}+\sqrt{n^2-2n}}\)
\(=\lim\limits\dfrac{4}{\sqrt{1+\dfrac{2}{n}}+\sqrt{1-\dfrac{2}{n}}}\)
\(=\dfrac{4}{1+1}=\dfrac{4}{2}=2\)
giá trị của giới hạn lim \(\left(\dfrac{1}{n^2}+\dfrac{2}{n^2}+...+\dfrac{n-1}{n^2}\right)\)
\(=\lim\left(\dfrac{1+2+...+n-1}{n^2}\right)=\lim\dfrac{n\left(n-1\right)}{2n^2}=\dfrac{1}{2}\)
giá trị của giới hạn lim \(\dfrac{\dfrac{1}{2}+1+\dfrac{3}{2}+...+\dfrac{n}{2}}{n^2+1}\)
\(\dfrac{1}{2}+\dfrac{2}{2}+...+\dfrac{n}{2}=\dfrac{1+2+...+n}{2}=\dfrac{n\left(n+1\right)}{4}\)
\(\Rightarrow\lim\dfrac{\dfrac{1}{2}+1+\dfrac{3}{2}+...+\dfrac{n}{2}}{n^2+1}=\lim\dfrac{n\left(n+1\right)}{4\left(n^2+1\right)}=\dfrac{1}{4}\)
Học lim là học csc,csn chưa ấy nhỉ :v Tui học lung tung nên chả biết lần đằng nào, thôi thì cứ nhớ cái này, cần CM tui CM luôn cho
Với csc: \(u_1+u_2+...+u_n=\dfrac{2\left(u_1+u_n\right)}{n}\)
csn: \(u_1+u_2+...+u_n=\dfrac{u_1.\left(1-q^n\right)}{1-q}\)
Ta thấy dãy số trên tử là một csc với công sai là d=1/2
\(\Rightarrow\dfrac{1}{2}+1+...+\dfrac{n}{2}=\dfrac{2\left(\dfrac{n}{2}+\dfrac{1}{2}\right)}{n}=\dfrac{n+1}{n}\)
\(lim\dfrac{n+1}{n\left(n^2+1\right)}=lim\dfrac{n+1}{n^3+n}=\dfrac{0}{1}=0\)
P/s: Tính giới hạn thì nếu tử và mẫu có bậc lớn nhất khác nhau thì chia cả tử và mẫu cho lũy thừa cao nhất ở mẫu
À anh Lâm làm đúng rồi đấy, tui nhớ nhầm cái tổng -.- Đang nằm ngủ bỗng chốc nhớ ra nên bật dậy luôn :v
Csc: \(S_n=\dfrac{n\left(u_1+u_n\right)}{2}\)
Csn: \(S_n=u_1.\dfrac{q^n-1}{q-1}\)
Thay vô đúng bằng 1/4 đấy nhé
tìm giá trị giới hạn \(lim\dfrac{n\sqrt{n}+1}{n^2+2}\)
`lim[n\sqrt{n}+1]/[n^2+2]`
`=lim[n^2\sqrt{1/n}+1]/[n^2+2]`
`=lim[n^2(\sqrt{1/n}+1/[n^2])]/[n^2(1+2/[n^2])]`
`=lim[\sqrt{1/n}+1/[n^2]]/[1+2/[n^2]]`
`=0/1=0`
cho giới hạn \(lim\dfrac{1+3^n}{\sqrt{4-a^2}+a.3^n}\) (a là tham số). có bao nhiêu giá trị nguyên của a thì kq giới hạn đã cho là một số hữu hạn
\(=\lim\dfrac{\left(\dfrac{1}{3}\right)^n+1}{\dfrac{\sqrt{4-a^2}}{3^n}+a}=\dfrac{1}{a}\)
Giới hạn đã cho là hữu hạn khi: \(\left\{{}\begin{matrix}a^2\le4\\a\ne0\end{matrix}\right.\) \(\Rightarrow a=\left\{-2;-1;1;2\right\}\)
tính giá trị của giới hạn \(\lim\limits_{x\rightarrow-\infty}\left(x+\sqrt{x^2+5x}\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x+\sqrt{x^2+5x}\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{-5x}{x-\sqrt{x^2+5x}}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{5}{-1-\sqrt{1+\dfrac{5}{x}}}=-\dfrac{5}{2}\)
Chỉ cần đáp án ạ
Có bao nhiêu giá trị nguyên của a để giới hạn
lim(\(\sqrt{n^2+a^2n}-\sqrt{n^2+\left(a+2\right)n+1}\)=0
A. 0
B. 2
C. 1
D. 3
Có 2 giá trị \(a=\left\{-1;2\right\}\)