Tìm số hạng không chứa x trong khai triển x 3 - 1 x 4 7 ; x > 0 .
A. a 0 = 21
B. a 0 = - 35
C. a 0 = 35
D. a 0 = - 42
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Trong khai triển nhị thức x + 1 x n , x ≠ 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức x + 1 x n , x ≠ 0 hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức ( x + 1 x ) n hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Tìm số hạng không chứa x trong khai triển nhị thức Newton của (1/x +x³)⁴
SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)
Số hạng ko chứa x tương ứng với 12-4k=0
=>k=3
=>SH đó là \(C^3_4=4\)
Tìm số hạng không chứa x trong khai triển ( 2x3 + \(\dfrac{1}{x^2}\))10
Số hạng tổng quát trong khai triển:
\(C_{10}^k.\left(2x^3\right)^k.\left(x^{-2}\right)^{10-k}=C_{10}^k.2^k.x^{3k}.x^{2k-20}=C_{10}^k.2^k.x^{5k-20}\)
Số hạng không chứa x \(\Rightarrow5k-20=0\Rightarrow k=4\)
Số hạng đó là: \(C_{10}^4.2^4=...\)
Tìm số hạng không chứa x trong khai triển 2 x - 1 x 2 6 , x ≠ 0
A. 15
B. 240
C. -240
D. -15
Tìm số hạng không chứa x trong khai triển: 1 x 2 3 + x 3 4 17 x ≠ 0
A. C 17 7
B. C 17 8 . x 8
C. C 17 7 . x 7
D. C 17 8
Tìm số hạng không chứa x trong khai triển 2 x - 1 x 2 6 , x ≠ 0.
A. -240
B. 15
C. 240
D. -15
Chọn C.
Ta có .
Số hạng thứ k + 1 là .
Tìm số hạng không chứa x trong khai triển khi: 6 - 3k = 0 => k = 2
Với k = 2 ta có số hạng không chứa x là: .