Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2019 lúc 15:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2019 lúc 6:43

Đáp án C

Cấp số nhân có công thức truy hồi dạng  u 1 = a u n + 1 = q . u n

Dãy số  u 1 = - 1 u n + 1 = 3 u n là CSN với u 1 = - 1  và công sai q = 3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 6:44

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:42

A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân.

B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\).

C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) .

D. Ta có: \({u_{n + 1}}- {u_n} =  - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\).

Vậy ta chọn đáp án B.

Big City Boy
Xem chi tiết
Trên con đường thành côn...
27 tháng 11 2023 lúc 14:57

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:21

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2019 lúc 13:28

Đáp án C

Ta có 0 < u 1 < 1  và nếu 0 < u k < 1  thì u k + 1 = 1 2 - u k < 1  nên bằng quy nạp ta có:

0 < u n < 1, ∀ n .

Ta có u 1 = 1 2 < u 2 = 2 3  và nếu u k < u k + 1  thì u k + 2 − u k + 1 = 1 2 − u k + 1 − 1 2 − u k > 0  nên bằng quy nạp ta có:  u n < u n + 1 , ∀ n .

Do đó dãy u n  tăng và bị chặn nên tồn tại lim u n = I ∈ R .

Ta có 

lim u n + 1 = lim 1 2 − u n ⇒ I = 1 2 − I ⇒ − I 2 + 2 I − 1 = 0

⇒ I = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2019 lúc 18:16

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Dự đoán

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Chứng minh dự đoán trên bằng quy nạp (bạn đọc tự chứng minh).

Từ đó

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2022 lúc 17:55

\(\left(n+1\right)u_{n+1}=\dfrac{1}{2}nu_n+n+2\)

\(\Leftrightarrow\left(n+1\right)u_{n+1}-2\left(n+1\right)=\dfrac{1}{2}\left[nu_n-2n\right]\)

Đặt \(n.u_n-2n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=-1\\v_{n+1}=\dfrac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n=-1.\left(\dfrac{1}{2}\right)^{n-1}\Rightarrow n.u_n-2n=-\dfrac{1}{2^{n-1}}\)

\(\Rightarrow u_n=2-\dfrac{1}{n.2^{n-1}}\)