Giải các phương trình sau:
a) 1 − 2 x 2 = 3 x x − 3 + x − 1 2 ;
b) 1 + x 3 + 1 − x 3 = 6 x + 1 2 ;
c) x − 4 4 − x + 3 = x 3 − 2 − x 6 ;
d) 5 x + 3 x − 4 5 15 = 3 − x 15 + 7 x 5 + 1 − x .
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Giải các phương trình sau:
a) \(\sqrt {2{x^2} + x + 3} = 1 - x\)
b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\)
a) \(\sqrt {2{x^2} + x + 3} = 1 - x\)
Bình phương hai vế của phương trình ta được:
\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)
Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2
Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x = - 1;x = - 2\) đều thỏa mãn
Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)
b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\)
Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)
Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn
Vậy phương trình vô nghiệm.
Giải các phương trình sau:
a) \(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)
b) \(\sqrt[3]{x^2-1}=2\)
(a) Điều kiện: \(\left\{{}\begin{matrix}x+1\ge0\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>5\end{matrix}\right.\Rightarrow x>5\).
Phương trình tương đương: \(\sqrt{x+1}=2\sqrt{x-5}\)
\(\Leftrightarrow x+1=4\left(x-5\right)\Leftrightarrow x=7\left(TM\right)\).
Vậy: \(S=\left\{7\right\}.\)
(b) Phương trình tương đương: \(x^2-1=8\)
\(\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\).
Vậy: \(S=\left\{\pm3\right\}\)
a: ĐKXĐ: x+1>=0 và x-5>0
=>x>5
\(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)
=>\(\sqrt{\dfrac{x+1}{x-5}}=2\)
=>\(\dfrac{x+1}{x-5}=4\)
=>4x-20=x+1
=>3x=21
=>x=7
b: ĐKXĐ: \(x\in R\)
\(\sqrt[3]{x^2-1}=2\)
=>x^2-1=8
=>x^2=9
=>x=3 hoặc x=-3
Giải các phương trình sau:
a, \(|x^2-x+2|-3x-7=0\)
b, \(|x-1|+|2x+3|=|x|+4\)
a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)
\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)
\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))
\(\Leftrightarrow x^2-x+2-3x-7=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2-5x+x-5=0\)
\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy: S={5;-1}
giải các phương trình sau:
a \(x^3+x^2+x=-\dfrac{1}{3}\)
b \(x^3+2x^2-4x=-\dfrac{8}{3}\)
a)\(x^3+x^2+x=-\dfrac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow\sqrt[3]{4}x=x-2\)
\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc
Giải các phương trình sau:
a) \(\sqrt {2{x^2} - 14} = x - 1\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} .\)
a) \(\sqrt {2{x^2} - 14} = x - 1\quad \left( 1 \right)\)
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {1; + \infty } \right)\)
\(\begin{array}{l}\left( 1 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 14} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 14 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 15 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = - 5}\end{array}} \right.\end{array}\)
Nhận thấy \(x = 3\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 1 \right)\) là: \(x = 3\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} \quad \left( 2 \right)\)
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} - 5x + 2 \ge 0}\\{{x^2} - 2x - 3 \ge 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\frac{{ - 5 - \sqrt {33} }}{2} \le x \le - 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {\frac{{ - 5 - \sqrt {33} }}{2}; - 1} \right].\)
\(\begin{array}{l}\left( 2 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt { - {x^2} - 5x + 2} } \right)^2} = {\left( {\sqrt {{x^2} - 2x - 3} } \right)^2}\\ \Leftrightarrow \,\, - {x^2} - 5x + 2 = {x^2} - 2x - 3\\ \Leftrightarrow \,\,2{x^2} + 3x - 5 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{5}{2}}\end{array}} \right.\end{array}\)
Nhận thấy \(x = - \frac{5}{2}\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 2 \right)\) là: \(x = - \frac{5}{2}\)
giải các phương trình sau:
a.|2-5x|=|2x-3|
b.|2-5x|-2|x+1|=3x+5
c.|3x-1|+2|x-1|=|5x-3|
a: =>|5x-2|=|2x-3|
=>5x-2=2x-3 hoặc 5x-2=-2x+3
=>3x=-1 hoặc 7x=5
=>x=5/7 hoặc x=-1/3
b: =>|5x-2|-|2x+2|=3x+5
TH1 x<-1
PT sẽ là 2-5x+2x+2=3x+5
=>-3x+4=3x+5
=>-6x=1
=>x=-1/6(loại)
TH2: -1<=x<2/5
Pt sẽ là 2-5x-2x-2=3x+5
=>-7x=3x+5
=>-4x=5
=>x=-5/4(loại)
Th3: x>=2/5
PT sẽ là 5x-2-2x-2=3x+5
=>3x-4=3x+5
=>0x=9(loại)
Giải các bất phương trình sau:
a) \({\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le 9\);
b) \({4^x} > {2^{x - 2}}\).
\(a,\left(\dfrac{1}{3}\right)^{2x+1}\le9\\ \Leftrightarrow2x+1\ge-2\\ \Leftrightarrow2x\ge-3\\ \Leftrightarrow x\ge-\dfrac{3}{2}\)
\(b,4^x>2^{x-2}\\ \Leftrightarrow2^{2x}>2^{x-2}\\ \Leftrightarrow2x>x-2\\ \Leftrightarrow x>-2\)
giải các phương trình sau:
a) \(x^2+4x+5=2\sqrt{2x+3}\).
b) \(3x^2+2x=2\sqrt{x^2+x}+1-x\).
\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)
\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)
\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)
Bài 1. Giải các phương trình sau:
a) |4x2 - 25| = 0
b) |x - 2| = 3
c) |x - 3| = 2x - 1
d) |x - 5| = |3x - 2|
Lời giải:
a) $|4x^2-25|=0$
$\Leftrightarrow 4x^2-25=0$
$\Leftrightarrow (2x-5)(2x+5)=0$
$\Rightarrow x=\pm \frac{5}{2}$
b)
$|x-2|=3$
\(\Rightarrow \left[\begin{matrix} x-2=-3\\ x-2=3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=5\end{matrix}\right.\)
c)
\(|x-3|=2x-1\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ \left[\begin{matrix} x-3=2x-1\\ x-3=1-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)
d)
$|x-5|=|3x-2|$
\(\Rightarrow \left[\begin{matrix} x-5=3x-2\\ x-5=2-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)