Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anna Peh
Xem chi tiết
Akai Haruma
1 tháng 7 2023 lúc 22:27

Lời giải:
$D=\frac{1+\cos a+2\cos ^2a-1+4\cos ^3a-3\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{4\cos ^3a+2\cos ^2a-2\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{2\cos a(\cos a+2\cos ^2a-1)}{\cos a+2\cos ^2a-1}$

$=2\cos a$

Nguyễn An
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 7:09

\(B=\dfrac{1-4\sin^2x\cdot\cos^2x}{\sin^2x+2\sin x\cdot\cos x+\cos^2}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x+4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}=\dfrac{1}{2\sin x\cdot\cos x}\)

Bé Poro Kawaii
Xem chi tiết
Hồng Phúc
16 tháng 5 2021 lúc 0:16

\(A=\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)

\(=\dfrac{2sin\alpha.cos\alpha+2.cos4\alpha.sin\alpha}{cos4\alpha+cos\alpha}\)

\(=\dfrac{2sin\alpha.\left(cos\alpha+cos4\alpha\right)}{cos4\alpha+cos\alpha}=2sin\alpha\)

Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 5 2021 lúc 9:07

\(x+2y=\dfrac{\pi}{2}\)

\(\Leftrightarrow x+y=\dfrac{\pi}{2}-y\) thay vào A được:

\(A=\dfrac{cos\left(\dfrac{\pi}{2}-y\right)-cosy}{cos\left(\dfrac{\pi}{2}-y\right)+cosy}\)\(=\dfrac{siny-cosy}{siny+cosy}\)\(=\dfrac{\dfrac{\sqrt{2}}{2}.siny-\dfrac{\sqrt{2}}{2}.cosy}{\dfrac{\sqrt{2}}{2}.siny+\dfrac{\sqrt{2}}{2}cosy}\)\(=\dfrac{cos\dfrac{\pi}{4}.siny-sin\dfrac{\pi}{4}.cosy}{sin\dfrac{\pi}{4}.siny+cos\dfrac{\pi}{4}.cosy}\)

\(=\dfrac{sin\left(y-\dfrac{\pi}{4}\right)}{cos\left(y-\dfrac{\pi}{4}\right)}\)\(=tan\left(y-\dfrac{\pi}{4}\right)\)

Nguyễn Việt Lâm
18 tháng 5 2021 lúc 8:54

\(x+2y=\dfrac{\pi}{2}\Rightarrow x+y=\dfrac{\pi}{2}-y\)

\(\Rightarrow cos\left(x+y\right)=cos\left(\dfrac{\pi}{2}-y\right)\)

\(\Rightarrow cos\left(x+y\right)=siny\)

Do đó: \(A=\dfrac{siny-cosy}{siny+cosy}=\dfrac{\sqrt{2}sin\left(y-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(y-\dfrac{\pi}{4}\right)}=tan\left(y-\dfrac{\pi}{4}\right)\)

Phan Ưng Tố Như
Xem chi tiết
Thao Nhi
18 tháng 8 2015 lúc 14:18

\(A=\frac{2.\left(cosx+1\right)-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+2-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+1+cos^2x}{sinx.\left(cosx+1\right)}=\frac{\left(cosx+1\right)^2}{sinx.\left(cosx+1\right)}=\frac{cosx+1}{sinx}\)

anhquan
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 7 2021 lúc 16:11

Đề bài ko chính xác, biểu thức này không rút gọn được (có thể coi việc biến đổi khả dĩ duy nhất \(1+2sina.cosa=\left(sina+cosa\right)^2\) không phải là hành động rút gọn)

An Thy
8 tháng 7 2021 lúc 16:15

chỉnh lại đề 1 chút: \(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha+2sin\alpha.cos\alpha}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}\)

\(=\dfrac{\left(cos\alpha+sin\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}\)

 

Sông Ngân
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 22:23

ta có :

\(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\)

Khách vãng lai đã xóa
Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2023 lúc 9:44

D=sin(pi+x)+sinx+cot(pi-x)+tan(pi/2-x)

=-sinx+sinx-cotx+cotx=0

Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 15:42

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:07

Câu 1 đề vẫn có vấn đề:

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)

\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)

Có thể coi như ko thể rút gọn tiếp

2.

\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2\left(cos^2x+sin^2x\right)+2=4\)

Hy
Xem chi tiết