Giới hạn lim x → 2 + ( x - 2 ) x x 2 - 4 bằng
A.0
B.-1
C.1
D. - ∞
4. Tính giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-x-1}{2x^2-x}_{ }\)
5. Tính giới hạn:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}_{ }\)
b) \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}_{ }\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)
a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)
b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)
Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)
\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)
\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)
Tìm giới hạn hàm số Lim x->4 1-x/(x-4)^2 Lim x->3+ 2x-1/x-3 Lim x->2+ -2x+1/x+2 Lim x->1- 3x-1/x+1
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
tính các giới hạn sau:
a. \(lim\dfrac{\sqrt{x+1}-x+1}{x^2-5x+6}\)
x->3
b. \(lim\left|x^3-3x\right|\)
x->-2
Câu a.
\(^{lim}_{x\rightarrow3}\dfrac{\sqrt{x+1}-x+1}{x^2-5x+6}\)
Nhân liên hợp ta đc:
\(^{lim}_{x\rightarrow3}\dfrac{x+1-\left(x-1\right)^2}{(x^2-5x+6)\cdot\left(\sqrt{x+1}+x-1\right)}\)
\(=^{lim}_{x\rightarrow3}\dfrac{-x^2+3x}{\left(x-3\right)\left(x-2\right)\left(\sqrt{x+1}+x-1\right)}\)
\(=^{lim}_{x\rightarrow3}\dfrac{-x}{\left(x-2\right)\cdot\left(\sqrt{x+1}+x-1\right)}\)
\(=\dfrac{-3}{\left(3-2\right)\cdot\left(\sqrt{3+1}+3-1\right)}=-\dfrac{3}{4}\)
Câu b.
\(^{lim}_{x\rightarrow-2}\left|x^3-3x\right|\)
\(=\left|\left(-2\right)^3-3\cdot\left(-2\right)\right|=\left|-2\right|=2\)
Câu này đơn giản chỉ thay số thôi nhé, nó ở dạng đa thức nữa!
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 2}}{{x + 1}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{{x^2}}}\).
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( { - 1 + \frac{2}{x}} \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \left( { - 1} \right) + \mathop {\lim }\limits_{x \to + \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} = - 1\)
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{{x^2}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {1 - \frac{2}{x}} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to - \infty } \left( {1 - \frac{2}{x}} \right)\)
\( = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}.\left( {\mathop {\lim }\limits_{x \to - \infty } 1 - \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x}} \right) = 0.\left( {1 - 0} \right) = 0\).
Tùm giới hạn của HS lim( x-> 2) = x^2 -2x +2 /(x-2)^2
giới hạn \(\lim\limits_{x\to +∞} f(x)=\dfrac{\sqrt{x^2+2}-2}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+2}-2}{x-2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2\left(1+\dfrac{2}{x^2}\right)}-2}{x\left(1-\dfrac{2}{x}\right)}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x\cdot\sqrt{1+\dfrac{2}{x^2}}-2}{x\left(1-\dfrac{2}{x}\right)}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{2}{x^2}}-\dfrac{2}{x}}{1-\dfrac{2}{x}}=\dfrac{\sqrt{1+0}-0}{1-0}=\dfrac{1}{1}=1\)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}}\);
c) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}}\).
a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} = + \infty \)
b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) = - \mathop {\lim }\limits_{x \to {2^ + }} x = - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} = +\infty \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} = - \infty \)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right)\)
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}}\)
c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}}\)
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right) = \mathop {\lim }\limits_{x \to - 1} \left( {3{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2\)
\( = 3\mathop {\lim }\limits_{x \to - 1} \left( {{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2 = 3.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 2 = 6\)
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \left( {x + 4} \right) = \mathop {\lim }\limits_{x \to 4} x + \mathop {\lim }\limits_{x \to 4} 4 = 4 + 4 = 8\)
c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {3 - \sqrt {x + 7} } \right)\left( {3 + \sqrt {x + 7} } \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{{3^2} - \left( {x + 7} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{2 - x}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - \left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - 1}}{{3 + \sqrt {x + 7} }}\)
\( = \frac{{\mathop {\lim }\limits_{x \to 2} \left( { - 1} \right)}}{{\mathop {\lim }\limits_{x \to 2} 3 + \sqrt {\mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 7} }} = \frac{{ - 1}}{{3 + \sqrt {2 + 7} }} = - \frac{1}{6}\)
Tìm các giới hạn sau:
1/ \(\lim\limits_{x->-1}\) \(\dfrac{x^{2019}+1}{x^2+x}\)
2/ \(\lim\limits_{x->1}\) \(\dfrac{x+x^2+...+x^n-n}{x-1}\)
Lời giải:
1.
\(\lim\limits_{x\to -1}\frac{x^{2019}+1}{x^2+x}=\lim\limits_{x\to -1}\frac{(x+1)(x^{2018}-x^{2017}+x^{2016}-....-x+1)}{x(x+1)}=\lim\limits_{x\to -1}\frac{x^{2018}-x^{2017}+x^{2016}-....-x+1}{x}\)
\(=\frac{(-1)^{2018}-(-1)^{2017}+(-1)^{2016}+....-(-1)+1}{-1}\)
\(=\frac{\underbrace{1+1+....+1+1}_{2019}}{-1}=\frac{2019}{-1}=-2019\)
2.
\(\lim\limits_{x\to 1}\frac{(x-1)+(x^2-1)+(x^3-1)+....+(x^n-1)}{x-1}\\ =\lim\limits_{x\to 1}\frac{(x-1)+(x-1)(x+1)+(x-1)(x^2+x+1)+....+(x-1)(x^{n-1}+x^{n-2}+...+x+1)}{x-1}\)
$\lim\limits_{x\to 1}[1+(x+1)+(x^2+x+1)+....+(x^{n-1}+x^{n-2}+...+x+1)]$
$=1+2+3+....+n=n(n+1):2$
\(\)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} + 5x - 2} \right)\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}}\).
a) \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} + 5x - 2} \right) = \mathop {\lim }\limits_{x \to - 2} {x^2} + \mathop {\lim }\limits_{x \to - 2} \left( {5x} \right) - \mathop {\lim }\limits_{x \to - 2} 2\)
\( = \mathop {\lim }\limits_{x \to - 2} {x^2} + 5\mathop {\lim }\limits_{x \to - 2} x - \mathop {\lim }\limits_{x \to - 2} 2 = {\left( { - 2} \right)^2} + 5.\left( { - 2} \right) - 2 = - 8\)
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)