Một cấp số cộng có số hạng đầu u 1 = 2018 công sai d = − 5 . Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm.
A. u 406
B. u 403
C. u 405
D. u 404
Một cấp số cộng có số hạng đầu u 1 = 2018 , công sai d = - 5 . Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm.
A. u 406
B. u 403
C. u 405
D. u 404
Một cấp số cộng có số hạng đầu là u 1 = 2018 , công sai d = -5. Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm
A. u 406
B. u 403
C. u 405
D. u 404
Một cấp số cộng có số hạng đầu u 1 = 2018 và công sai d = - 5 . Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm?
A. u 403
B. u 404
C. u 405
D. u 406
Cho cấp số cộng u n với số hạng đầu là u 1 = − 2017 và công sai d = 3. Bắt đầu từ số hạng nào trở đi mà các số hạng của cấp số cộng đều nhận giá trị dương?
A. u 674
B. u 672
C. u 675
D. u 673
Đáp án A
Công thức số hạng tổng quát là: u n = u 1 + n − 1 d = − 2017 + n − 1 .3 = 3 n − 2020.
Ta có: u n > 0 ⇔ 3 n − 2020 > 0 ⇔ n > 2020 3 ~ 673 , 3 ⇒ Bắt đầu từ số hạng u 674 các số hạng của cấp số cộng đều nhận giá trị dương.
Cho cấp số cộng u n với số hạng đầu là u 1 = − 2017 và công sai d = 3. Bắt đầu từ số hạng nào trở đi mà các số hạng của cấp số cộng đều nhận giá trị dương?
A. u 674 .
B. u 672 .
C. u 675 .
D. u 673 .
Đáp án A.
Ta có: u n = u 1 + n − 1 d = − 2017 + n − 1 .3
Số hạng nhận giá trị dương khi:
− 2017 + n − 1 .3 > 0 ⇔ n − 1 > 2017 3 ⇔ n > 673 ⇒ n = 674.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?
Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)
\( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)
\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)
\( \Leftrightarrow \left[ \begin{array}{l}n = - 54(L)\\n = 50(TM)\end{array} \right.\)
Vậy phải lấy tổng 50 số hạng đầu
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n n ∈ N * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó.
A. u 1 = - 8 , d = 10
B. u 1 = - 8 , d = - 10
C. u 1 = 8 , d = 10
D. u 1 = 8 , d = - 10
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n n ∈ ℕ * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10
B. u 1 = - 8 ; d = - 10
C. u 1 = 8 ; d = 10
D. u 1 = 8 ; d = - 10