Cho biểu thức: P(x) = ( 1 + x ) 9 + ( 1 + x ) 10 + ( 1 + x ) 11 + ( 1 + x ) 12 + ( 1 + x ) 13 + ( 1 + x ) 14 + ( 1 + x ) 15 . Hệ số của số hạng chứa x 9 trong khai triển thành đa thức của P(x) là
A. 3003
B. 8000
C. 8008
D. 3000
Cho biểu thức:
\(P=\frac{x-13}{\sqrt{x-9}-2}\:\) (x>9 hoặc x=9; x#1)
a) Rút gọn biểu thức
b) Tìm giá trị nhỏ nhất của P
a) Đk: \(x\ge9;x\ne13\)
\(P=\dfrac{x-9-4}{\sqrt{x-9}-2}=\dfrac{\left(\sqrt{x-9}-2\right)\left(\sqrt{x-9}+2\right)}{\sqrt{x-9}-2}=\sqrt{x-9}+2\)
b) \(P=\sqrt{x-9}+2\ge2\)
Dấu "="xảy ra \(\Leftrightarrow x=9\)
Vậy GTNN của P là 2
Cho biểu thức $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}$ và $B=\dfrac{3 \sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{4 x+6}{x-9}$ với $x \geq 0, x \neq 9$
1. Tình giá trị của biểu thức $A$ khi $x=\dfrac{1}{9}$.
2. Rút gọn biểu thức $B$.
3. Tìm giá trị của $x$ để biểu thức $P=A: B$ đạt giá trị nhỏ nhất.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
toán lớp 9 khó zậy em đọc k hỉu 1 phân số
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên
a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)
\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)
\(=\dfrac{2x-14}{x-3}\)
b) Ta có: \(x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:
\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)
Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)
c) Để P nguyên thì \(2x-14⋮x-3\)
\(\Leftrightarrow2x-6-8⋮x-3\)
mà \(2x-6⋮x-3\)
nên \(-8⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(-8\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)
Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)
Cho biểu thức P = ( a + 1 ) x 2 + ( b + 1 ) x 3
a. Tính giá trị biểu thức P với a = 9, b = 15
b. So sánh giá trị của biểu thức P vừa tìm được với biểu thức
m = 2 x a + 3 x b + 5 với a = 9 và b = 15
a: Thay a=9 và b=15 vào P, ta được:
\(P=\left(9+1\right)\cdot2+\left(15+1\right)\cdot3\)
\(=10\cdot2+16\cdot3=20+48=68\)
b: \(m=2\cdot a+3\cdot b+5=2\cdot9+3\cdot15+5=68\)
mà P=68
nên P=m
Cho biểu thức P =2x^2-1/x^2+1 – x-1/x + 3/x+1 a) tìm giá trị lớn nhất của biểu thức Q=1/x^2–9.P
a: \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\)
\(=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
\(Q=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}=\dfrac{1}{\left(x-3\right)\left(x+1\right)}=\dfrac{1}{x^2-2x+1-4}=\dfrac{1}{\left(x-1\right)^2-4}< =-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1
Bài 60 (trang 33 SGK Toán 9 Tập 1)
Cho biểu thức $B=\sqrt{16 x+16}-\sqrt{9 x+9}+\sqrt{4 x+4}+\sqrt{x+1}$ với $x \geq-1$.
a) Rút gọn biểu thức $B$;
b) Tìm $x$ sao cho $B$ có giá trị là $16$.
\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)
a, Với \(x\ge-1\)
\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b, Ta có B = 16 hay
\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được
\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)
a) B = 4√x+1 b) x = 15
Câu 1 (1,5 điểm). Cho các biểu thức A = 2√x +1/√x -3 và
B =2x+36/x-9 - 9/√x -3 - √x/√x +3 (với x≥0;x≠ 9)
a) Tính giá trị của A khi x = 49
b) Rút gọn biểu thức B.
c) Đặt P = A.B. Tìm tất cả các giá trị của x để P > 1.
a: Thay x=49 vào A, ta được:
\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)
b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)
P>1 khi P-1>0
=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)
Cho 2 biểu thức
A=2√x/x+3
B=√x+1/√x-3 +7√x+3/9+x
(đk x>= 0,x khác 9)
a)Tính giá trị tại của biểu thức A khi x=16
b) Rút gọn P=A+B
a: Thay x=16 vào A, ta được:
\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
Cho hai biểu thức A=\(\dfrac{x+7}{\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)(x>0,x≠9)
a.tính giá trị biểu thức A khi x=121
b.rút gọn biểu thức B
c.đặt S=1/B+A.So sánh S và \(|s|\)
a: Thay x=121 vào A, ta được:
\(A=\dfrac{121+7}{\sqrt{121}}=\dfrac{128}{11}\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
c: \(S=\dfrac{1}{B}+A=\dfrac{\sqrt{x}+3}{\sqrt{x}}+\dfrac{x+7}{\sqrt{x}}=\dfrac{x+\sqrt{x}+10}{\sqrt{x}}\)
Vì \(x+\sqrt{x}+10=\sqrt{x}\left(\sqrt{x}+1\right)+10>=10>0\forall x\) thỏa mãn ĐKXĐ
và \(\sqrt{x}>0\forall\)x thỏa mãn ĐKXĐ
nên S>0 với mọi x thỏa mãn ĐKXĐ
=>S=|S|
Cho biểu thức B=x-3/2x+1(3x-1/x2-9-1/3-x)
a) tìm ĐKXĐ của biểu thức B
b) Rút gọn biểu thức B
c) Tìm giá trị của x biểu thức B có giá trị bằng 1