Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = e - x , x = 1 .
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 và x = 1.
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Tính diện tích hình phẳng giới hạn bởi các đường y = ( e + 1 ) x y = ( e x + 1 ) x Chọn đáp án đúng:
Hoành độ giao điểm của hai đường là nghiệm của phương trình
Chọn D.
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y =x và y = ex, trục tung và đường thẳng x=1 được tính theo công thức
A. S = ∫ 0 1 e x - 1 d x
B. S = ∫ - 1 1 e x - 1 d x
C. S = ∫ 0 1 x - e x d x
D. S = ∫ - 1 1 e x - x d x
Đáp án A
Xét hàm số f(x) = ex – x, hàm số liên tục trên đoạn [0;1]
Ta có => f(x) đồng biến trên [0;1]
Suy ra
=> S = ∫ 0 1 e x - 1 d x
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x và y = e x , trục tung và đường thẳng x=1 được tính theo công thức
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x - e - x , trục hoành, đường thẳng x = -1 và đường thẳng x = 1.
A. e + 1 e - 2
B. 0
C. 2 e + 1 e - 2
D. e + 1 e
Diện tích hình phẳng giới hạn bởi y = ( e + 1 ) x và y = ( 1 + e x ) x là:
A. 1 - e 2
B. e 2 - 1
C. e - 1
D. 1 - e
Tính diện tích giới hạn bởi các đường cong y=(e+1)x; y = (ex + 1)x
A. e 5 - 19 100
B. 2 e 3 - 73 50
C. e 3 - 11 20
D. e 2 - 1
Chọn D.
Hoành độ giao điểm của hai đường là nghiệm của phương trình (e+1)x = ( 1 + e x ) x <=> x = 0 hoặc x =1
Diện tích cần tính là S = ∫ 0 1 x e x d x - ∫ 0 1 e x d x = ∫ 0 1 x d ( e x ) - e ∫ 0 1 x d x