Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = e - x , x = 1 .
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Diện tích hình phẳng giới hạn bởi các đường y = 1 + ln x x , y = 0 , x = 1 và x = e là S = a 2 + b . Khi đó giá trị a 2 + b 2 là:
A. 2 3 .
B. 4 3 .
C. 20 9 .
D.2
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x ln x , trục Ox và đường thẳng x=e
A. S = e 2 + 3 4
B. S = e 2 - 1 2
C. S = e 2 + 1 2
D. S = e 2 + 1 4
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Cho hàm số y=f(x) liên tuc trên R và thỏa mãn f(0)<0<f(-1) Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f x , y = 0 , x = − 1 v à x = 1. Xét các mênh đề sau
1. S = ∫ − 1 0 f x d x + ∫ 0 1 f x d x 2. S = ∫ − 1 1 f x d x 3. S = ∫ − 1 1 f x d x 4. S = ∫ − 1 1 f x d x
Số mệnh đề đúng là
A. 2
B. 1
C. 3
D. 4
Tính diện tích S hình phẳng giới hạn bởi các đường y = x 2 + 1 , x = - 1 , x = 2 và trục hoành
A. S=6
B. S=13/6
C. S=13
D. S=16
Tính diện tích S của hình phẳng giới hạn bởi đường parabol y = x 3 - 3 x + 2 và đường thẳng y=x-1.
A. S = 3 4
B. S = 2
C. S = 37 14
D. S = 799 300
Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số: y = 3 x 2 ; y = 2 x + 5 ; x = - 1 ; x = 2
A. S = 256 27
B. S = 269 27
C. S = 9
D. S = 27
Gọi S là diện tích của hình phẳng giới hạn bởi các đường y = 3 x , y = 0 , x = 0 , x = 2 . Mệnh đề nào dưới đây đúng?
A. S = ∫ 0 2 3 x d x
B. S = π ∫ 0 2 3 2 x d x
C. S = π ∫ 0 2 3 x d x
D. ∫ 0 2 3 2 x d x